Question Number 39386 by maxmathsup by imad last updated on 05/Jul/18
$${find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Commented by abdo mathsup 649 cc last updated on 08/Jul/18
$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:{changement}\:{x}={tant} \\ $$$${give}\: \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{ln}\left(\mathrm{1}+{tant}\right)}{\mathrm{1}+{tan}^{\mathrm{2}} {t}}\:\left(\mathrm{1}+{tan}^{\mathrm{2}} {t}\right){dt} \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\:\left(\mathrm{1}+{tant}\right){dt}\:{let}\:{consider} \\ $$$${f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left(\mathrm{1}+{xtant}\right){dt}\:{we}\:{have} \\ $$$${f}^{'} \left({x}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{tant}}{\mathrm{1}+{xtant}}\:{dt} \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\:\frac{{sint}}{{cost}\left(\mathrm{1}+{x}\:\frac{{sint}}{{cost}}\right)}{dt} \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\:\frac{{sint}}{{cost}\:+{x}\:{sint}}\:{dt}\:\:{chsngement}\:{tan}\left(\frac{{t}}{\mathrm{2}}\right)={u} \\ $$$${give} \\ $$$${f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}\:−\mathrm{1}} \:\:\:\frac{\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}{\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }\:+{x}\:\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}\:\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}\:−\mathrm{1}} \:\:\:\:\:\:\:\:\frac{\mathrm{4}{u}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\:\mathrm{1}−{u}^{\mathrm{2}} \:+\mathrm{2}{xu}\right)}{du} \\ $$$$=−\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}\:−\mathrm{1}} \:\:\:\:\:\:\frac{\mathrm{4}{u}}{\left({u}^{\mathrm{2}} \:+\mathrm{1}\right)\left({u}^{\mathrm{2}} \:−\mathrm{2}{xu}\:−\mathrm{1}\right)}{du} \\ $$$${let}\:{decompose}\:{F}\left({u}\right)=\:\frac{\mathrm{4}{u}}{\left({u}^{\mathrm{2}} \:+\mathrm{1}\right)\left({u}^{\mathrm{2}} \:−\mathrm{2}{xu}\:−\mathrm{1}\right)} \\ $$$${roots}\:{of}\:{u}^{\mathrm{2}} \:−\mathrm{2}{xu}\:−\mathrm{1} \\ $$$$\Delta^{'} \:={x}^{\mathrm{2}\:} \:+\mathrm{1}\:\Rightarrow\:{u}_{\mathrm{1}} ={x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${u}_{\mathrm{2}} ={x}−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${F}\left({u}\right)\:=\:\frac{\mathrm{4}{u}}{\left({u}^{\mathrm{2}} \:+\mathrm{1}\right)\left({u}−{u}_{\mathrm{1}} \right)\left({u}\:−{u}_{\mathrm{2}} \right)} \\ $$$$=\:\frac{{a}}{{u}\:−{u}_{\mathrm{1}} }\:\:+\frac{{b}}{{u}−{u}_{\mathrm{2}} }\:+\frac{{cu}\:+{d}}{{u}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${a}\:=\:\frac{\mathrm{4}{u}_{\mathrm{1}} }{\left({u}_{\mathrm{1}} ^{\mathrm{2}} \:+\mathrm{1}\right)\left({u}_{\mathrm{1}} \:−{u}_{\mathrm{2}} \right)} \\ $$$${b}\:=\:\frac{\mathrm{4}{u}_{\mathrm{2}} }{\left({u}_{\mathrm{2}} ^{\mathrm{2}} \:+\mathrm{1}\right)\left({u}_{\mathrm{2}} \:−{u}_{\mathrm{1}} \right)} \\ $$$${lim}_{{u}\rightarrow+\infty} {u}\:{F}\left({u}\right)=\mathrm{0}\:=\:{a}+{b}\:\:+{c}\:\Rightarrow \\ $$$${c}\:=−{a}−{b}\:\Rightarrow \\ $$$${F}\left({u}\right)\:=\:\:\frac{{a}}{{u}−{u}_{\mathrm{1}} }\:+\frac{{b}}{{u}−{u}_{\mathrm{2}} }\:+\frac{\left(−{a}−{b}\right){u}\:+{d}}{{u}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${F}\left(\mathrm{0}\right)\:=\mathrm{0}\:=\:−\frac{{a}}{{u}_{\mathrm{1}} }\:−\frac{{b}}{{u}_{\mathrm{2}} }\:+{d}\:\Rightarrow{d}\:=\:\frac{{a}}{{u}_{\mathrm{1}} }\:+\frac{{b}}{{u}_{\mathrm{2}} }\:\Rightarrow \\ $$$${F}\left({u}\right)\:=\:\frac{{a}}{{u}−{u}_{\mathrm{1}} }\:+\frac{{b}}{{u}−{u}_{\mathrm{2}} }\:+\frac{\left(−{a}−{b}\right){u}\:+\frac{{a}}{{u}_{\mathrm{1}} }\:+\frac{{b}}{{u}_{\mathrm{2}} }}{{u}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$$\int\:{F}\left({u}\right){du}\:={a}\:{ln}\mid{u}−{u}_{\mathrm{1}} \mid\:+{b}\:{ln}\mid{u}−{u}_{\mathrm{2}} \mid \\ $$$$−\frac{{a}+{b}}{\mathrm{2}}\:{ln}\left({u}^{\mathrm{2}} \:+\mathrm{1}\right)\:\:+\left(\frac{{a}}{{u}_{\mathrm{1}} }\:+\frac{{b}}{{u}_{\mathrm{2}} }\right)\:{arctanu}\:+{k}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}\:−\mathrm{1}} \:{F}\left({u}\right){du}\:\:=\left[{aln}\mid{u}−{u}_{\mathrm{1}} \mid\:+{bln}\mid{u}−{u}_{\mathrm{2}} \mid\right. \\ $$$$\left.−\frac{{a}+{b}}{\mathrm{2}}{ln}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\:+\:\frac{{au}_{\mathrm{2}} \:+{bu}_{\mathrm{1}} }{{u}_{\mathrm{1}} {u}_{\mathrm{2}} }\:{arctan}\left({u}\right)\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \\ $$$$={a}\:{ln}\mid\sqrt{\mathrm{2}}−\mathrm{1}\:−{u}_{\mathrm{1}} \mid\:+{bln}\mid\sqrt{\mathrm{2}}−\mathrm{1}−{u}_{\mathrm{2}} \mid \\ $$$$−\frac{{a}+{b}}{\mathrm{2}}\:{ln}\left(\mathrm{1}+\left(\sqrt{\mathrm{2}}\:−\mathrm{1}\right)^{\mathrm{2}} \right)\:\:+\frac{{au}_{\mathrm{2}} \:+{bu}_{\mathrm{1}} }{{u}_{\mathrm{1}} {u}_{\mathrm{2}} }\:{arctan}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right) \\ $$$$−{a}\:{ln}\mid{u}_{\mathrm{1}} \mid−{b}\:{ln}\mid{u}_{\mathrm{2}} \mid\:{and}\: \\ $$$${f}\left({x}\right)\:=−\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}\:−\mathrm{1}} \:{F}\left({u}\right){du}\:…{be}\:{continued}… \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 06/Jul/18
$${x}={tank}\:\:{dx}={sec}^{\mathrm{2}} {kdk} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{4}}} \frac{{ln}\left(\mathrm{1}+{tank}\right)}{{sec}^{\mathrm{2}} {k}}{sec}^{\mathrm{2}} {k}\:{dk} \\ $$$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{4}}} {ln}\left\{\mathrm{1}+{tan}\left(\frac{\Pi}{\mathrm{4}}−{k}\right)\right\} \\ $$$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{4}}} {ln}\left\{\mathrm{1}+\frac{\mathrm{1}−{tank}}{\mathrm{1}+{tank}}\right\} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{4}}} {ln}\mathrm{2}−{ln}\left(\mathrm{1}+{tank}\right)\:{dk} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{4}}} {ln}\mathrm{2}\:{dk} \\ $$$${I}=\frac{\Pi}{\mathrm{8}}{ln}\mathrm{2} \\ $$$$ \\ $$