Question Number 40154 by maxmathsup by imad last updated on 16/Jul/18
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$
Commented by maxmathsup by imad last updated on 16/Jul/18
$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt}\:\:\:{let}\:{integrate}\:{by}\:{parts}\:{u}^{'} =\frac{\mathrm{1}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }\:\:{and}\:{v}={ln}\left({t}\right) \\ $$$${I}\:=\:\left[\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{t}}\right){ln}\left({t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{t}}\right)\frac{{dt}}{{t}} \\ $$$$=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\mathrm{1}+{t}}\:\:=−\left[{ln}\mid\mathrm{1}+{t}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} \:\:=−{ln}\left(\mathrm{2}\right) \\ $$$${I}\:=−{ln}\left(\mathrm{2}\right)\:. \\ $$
Answered by ajfour last updated on 16/Jul/18
$${I}=\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \frac{\mathrm{ln}\:{t}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }\: \\ $$$$\:\:=\:−\frac{\mathrm{ln}\:{t}}{\left(\mathrm{1}+{t}\right)}\mid_{\mathrm{0}} ^{\mathrm{1}} +\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \frac{{dt}}{{t}\left(\mathrm{1}+{t}\right)} \\ $$$$\:\:=\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\left(\frac{\mathrm{ln}\:{t}}{\mathrm{1}+{t}}\right)−\mathrm{ln}\:\left(\frac{{t}}{\mathrm{1}+{t}}\right)\right]−\mathrm{ln}\:\mathrm{2} \\ $$$$\:\:=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\mathrm{ln}\:\frac{\left(\mathrm{1}+{t}\right){t}^{\mathrm{1}+{t}} }{{t}}\right]−\mathrm{ln}\:\mathrm{2} \\ $$$$\:\:=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\mathrm{ln}\:\left(\mathrm{1}+{t}\right){t}^{{t}} \right]−\mathrm{ln}\:\mathrm{2} \\ $$$$\:\:=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}ln}\:\left(\mathrm{1}+{t}\right)+\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:{t}}{\left(\mathrm{1}/{t}\right)}−\mathrm{ln}\:\mathrm{2} \\ $$$$\:\:=\:\mathrm{0}+\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}/{t}}{−\mathrm{1}/{t}^{\mathrm{2}} }\right)\:−\mathrm{ln}\:\mathrm{2} \\ $$$$\:{I}=\:−\mathrm{ln}\:\mathrm{2}\:. \\ $$$$ \\ $$