Menu Close

find-the-value-of-0-1-ln-t-1-t-2-dt-




Question Number 40154 by maxmathsup by imad last updated on 16/Jul/18
find the value of  ∫_0 ^1    ((ln(t))/((1+t)^2 ))dt
findthevalueof01ln(t)(1+t)2dt
Commented by maxmathsup by imad last updated on 16/Jul/18
let I = ∫_0 ^1   ((ln(t))/((1+t)^2 ))dt   let integrate by parts u^′ =(1/((1+t)^2 ))  and v=ln(t)  I = [(1−(1/(1+t)))ln(t)]_0 ^1  −∫_0 ^1  (1−(1/(1+t)))(dt/t)  = −∫_0 ^1   (dt/(1+t))  =−[ln∣1+t∣]_0 ^1   =−ln(2)  I =−ln(2) .
letI=01ln(t)(1+t)2dtletintegratebypartsu=1(1+t)2andv=ln(t)I=[(111+t)ln(t)]0101(111+t)dtt=01dt1+t=[ln1+t]01=ln(2)I=ln(2).
Answered by ajfour last updated on 16/Jul/18
I=∫_0 ^(  1) ((ln t)/((1+t)^2 ))     = −((ln t)/((1+t)))∣_0 ^1 +∫_0 ^(  1) (dt/(t(1+t)))    = lim_(t→0) [(((ln t)/(1+t)))−ln ((t/(1+t)))]−ln 2    =lim_(t→0) [ln (((1+t)t^(1+t) )/t)]−ln 2    =lim_(t→0) [ln (1+t)t^t ]−ln 2    =lim_(t→0) ln (1+t)+lim_(t→0)  ((ln t)/((1/t)))−ln 2    = 0+lim_(t→0) (((1/t)/(−1/t^2 ))) −ln 2   I= −ln 2 .
I=01lnt(1+t)2=lnt(1+t)01+01dtt(1+t)=limt0[(lnt1+t)ln(t1+t)]ln2=limt0[ln(1+t)t1+tt]ln2=limt0[ln(1+t)tt]ln2=limlnt0(1+t)+limt0lnt(1/t)ln2=0+limt0(1/t1/t2)ln2I=ln2.

Leave a Reply

Your email address will not be published. Required fields are marked *