Menu Close

find-the-value-of-0-1-ln-t-1-t-2-dt-




Question Number 40154 by maxmathsup by imad last updated on 16/Jul/18
find the value of  ∫_0 ^1    ((ln(t))/((1+t)^2 ))dt
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$
Commented by maxmathsup by imad last updated on 16/Jul/18
let I = ∫_0 ^1   ((ln(t))/((1+t)^2 ))dt   let integrate by parts u^′ =(1/((1+t)^2 ))  and v=ln(t)  I = [(1−(1/(1+t)))ln(t)]_0 ^1  −∫_0 ^1  (1−(1/(1+t)))(dt/t)  = −∫_0 ^1   (dt/(1+t))  =−[ln∣1+t∣]_0 ^1   =−ln(2)  I =−ln(2) .
$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt}\:\:\:{let}\:{integrate}\:{by}\:{parts}\:{u}^{'} =\frac{\mathrm{1}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }\:\:{and}\:{v}={ln}\left({t}\right) \\ $$$${I}\:=\:\left[\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{t}}\right){ln}\left({t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{t}}\right)\frac{{dt}}{{t}} \\ $$$$=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\mathrm{1}+{t}}\:\:=−\left[{ln}\mid\mathrm{1}+{t}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} \:\:=−{ln}\left(\mathrm{2}\right) \\ $$$${I}\:=−{ln}\left(\mathrm{2}\right)\:. \\ $$
Answered by ajfour last updated on 16/Jul/18
I=∫_0 ^(  1) ((ln t)/((1+t)^2 ))     = −((ln t)/((1+t)))∣_0 ^1 +∫_0 ^(  1) (dt/(t(1+t)))    = lim_(t→0) [(((ln t)/(1+t)))−ln ((t/(1+t)))]−ln 2    =lim_(t→0) [ln (((1+t)t^(1+t) )/t)]−ln 2    =lim_(t→0) [ln (1+t)t^t ]−ln 2    =lim_(t→0) ln (1+t)+lim_(t→0)  ((ln t)/((1/t)))−ln 2    = 0+lim_(t→0) (((1/t)/(−1/t^2 ))) −ln 2   I= −ln 2 .
$${I}=\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \frac{\mathrm{ln}\:{t}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }\: \\ $$$$\:\:=\:−\frac{\mathrm{ln}\:{t}}{\left(\mathrm{1}+{t}\right)}\mid_{\mathrm{0}} ^{\mathrm{1}} +\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \frac{{dt}}{{t}\left(\mathrm{1}+{t}\right)} \\ $$$$\:\:=\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\left(\frac{\mathrm{ln}\:{t}}{\mathrm{1}+{t}}\right)−\mathrm{ln}\:\left(\frac{{t}}{\mathrm{1}+{t}}\right)\right]−\mathrm{ln}\:\mathrm{2} \\ $$$$\:\:=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\mathrm{ln}\:\frac{\left(\mathrm{1}+{t}\right){t}^{\mathrm{1}+{t}} }{{t}}\right]−\mathrm{ln}\:\mathrm{2} \\ $$$$\:\:=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\mathrm{ln}\:\left(\mathrm{1}+{t}\right){t}^{{t}} \right]−\mathrm{ln}\:\mathrm{2} \\ $$$$\:\:=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}ln}\:\left(\mathrm{1}+{t}\right)+\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:{t}}{\left(\mathrm{1}/{t}\right)}−\mathrm{ln}\:\mathrm{2} \\ $$$$\:\:=\:\mathrm{0}+\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}/{t}}{−\mathrm{1}/{t}^{\mathrm{2}} }\right)\:−\mathrm{ln}\:\mathrm{2} \\ $$$$\:{I}=\:−\mathrm{ln}\:\mathrm{2}\:. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *