find-the-value-of-0-1-ln-t-1-t-2-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 40154 by maxmathsup by imad last updated on 16/Jul/18 findthevalueof∫01ln(t)(1+t)2dt Commented by maxmathsup by imad last updated on 16/Jul/18 letI=∫01ln(t)(1+t)2dtletintegratebypartsu′=1(1+t)2andv=ln(t)I=[(1−11+t)ln(t)]01−∫01(1−11+t)dtt=−∫01dt1+t=−[ln∣1+t∣]01=−ln(2)I=−ln(2). Answered by ajfour last updated on 16/Jul/18 I=∫01lnt(1+t)2=−lnt(1+t)∣01+∫01dtt(1+t)=limt→0[(lnt1+t)−ln(t1+t)]−ln2=limt→0[ln(1+t)t1+tt]−ln2=limt→0[ln(1+t)tt]−ln2=limlnt→0(1+t)+limt→0lnt(1/t)−ln2=0+limt→0(1/t−1/t2)−ln2I=−ln2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-1-2-t-2-t-2-1-dt-Next Next post: find-the-value-of-dt-t-2-2t-2-3-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.