Menu Close

find-the-value-of-0-1-x-2-3-x-2-dx-




Question Number 27620 by abdo imad last updated on 11/Jan/18
find the value of  ∫_0 ^∞  (((−1)^x^2  )/(3+x^2 ))dx .
findthevalueof0(1)x23+x2dx.
Commented by abdo imad last updated on 12/Jan/18
let put I= ∫_0 ^∞  (((−1)^x^2  )/(3+x^2 ))dx   due to (−1)=e^(iπ)   I = ∫_0 ^∞    (e^(iπx^2 ) /(3+x^2 ))dx = (1/2) ∫_R   (e^(iπx^2 ) /(3+x^2 ))dx  let introduce the  complex function  f(z)= (e^(iπz^2 ) /(z^2  +3))  we have  f(z)= (e^(iπz^2 ) /((z −i(√3))(z+i(√(3)))))  the poles of f are z_1 = i(√3) and  z_2 =−i(√3)   the residus theorem give  ∫_R f(z)dz= 2iπ Res(f,i(√3))  but  Res(f,i(√3))= lim_(z−>i(√3)) (z −i(√3))f(z)= lim_(z−>i(√3))   (e^(iπz^2 ) /(z+i(√3)))  =  (e^(iπ(−3)) /(2i(√3)))=  (((−1)^(−3) )/(2i(√3)))= ((−1)/(2i(√3)))  ∫_(R ) f(z)dz= 2iπ.((−1)/(2i(√3)))  = ((−π)/( (√3)))      and   I= ((−π)/(2(√3)))  .
letputI=0(1)x23+x2dxdueto(1)=eiπI=0eiπx23+x2dx=12Reiπx23+x2dxletintroducethecomplexfunctionf(z)=eiπz2z2+3wehavef(z)=eiπz2(zi3)(z+i3)thepolesoffarez1=i3andz2=i3theresidustheoremgiveRf(z)dz=2iπRes(f,i3)butRes(f,i3)=limz>i3(zi3)f(z)=limz>i3eiπz2z+i3=eiπ(3)2i3=(1)32i3=12i3Rf(z)dz=2iπ.12i3=π3andI=π23.

Leave a Reply

Your email address will not be published. Required fields are marked *