Menu Close

find-the-value-of-0-1-x-2x-1-2-dx-




Question Number 27309 by abdo imad last updated on 04/Jan/18
find the value  of  ∫_0 ^∝    (((−1)^([x]) )/((2x+1)^2 ))dx
findthevalueof0(1)[x](2x+1)2dx
Answered by prakash jain last updated on 05/Jan/18
∫_0 ^∞ (((−1)^(⌊x⌋) )/((2x+1)^2 ))dx  =Σ_(i=0) ^∞ ∫_i ^(i+1) (((−1)^i )/((2x+1)^2 ))dx  =Σ_(i=0) ^∞ (−1)^i [−(1/(2x+1))]_i ^(i+1)   =Σ_(i=0) ^∞ (−1)^(i+1) [(1/(2i+1))−(1/(2i+3))]  =Σ_(i=0) ^∞ (−1)^(i+1) (1/(2i+1))−Σ_(i=0) ^∞ (−1)^(i+1) (1/(2i+3))  =Σ_(i=0) ^∞ (−1)^(i+1) (1/(2i+1))−Σ_(i=1) ^∞ (−1)^i (1/(2i+1))  =Σ_(i=0) ^∞ (−1)^(i+1) (1/(2i+1))−Σ_(i=0) ^∞ (−1)^i (1/(2i+1))+1  =−(π/4)−(π/4)+1=1−(π/2)
0(1)x(2x+1)2dx=i=0ii+1(1)i(2x+1)2dx=i=0(1)i[12x+1]ii+1=i=0(1)i+1[12i+112i+3]=i=0(1)i+112i+1i=0(1)i+112i+3=i=0(1)i+112i+1i=1(1)i12i+1=i=0(1)i+112i+1i=0(1)i12i+1+1=π4π4+1=1π2

Leave a Reply

Your email address will not be published. Required fields are marked *