Menu Close

find-the-value-of-0-1-x-E-1-x-dx-




Question Number 26569 by abdo imad last updated on 26/Dec/17
find the value of  ∫_0 ^(1 ) x E((1/x))dx
findthevalueof01xE(1x)dx
Commented by abdo imad last updated on 30/Dec/17
let put I= ∫_0 ^1 x E((1/x))dx and by the changement (1/x)=t  I = ∫_1 ^∝ ((E(t))/t^3 ) dt  =lim_(n−>∝)  S_n   with S_n  = Σ_(k=1) ^(k=n−1) ∫_k ^(k+1)  ((E(t))/t^3 )dt  S_n  = Σ_(k=1) ^(k=n−1)  k .∫_k ^(k+1) (dt/t^3 ) = (1/2) Σ_(k=1) ^(k=n−1) k( (1/k^2 ) − (1/((k+1)^2 )))  = (1/2) Σ_(k=1) ^(k=n−1) ((2k+1)/(k(k+1)^2 ))  =Σ_(k=1) ^(k=n−1) (1/((k+1)^2 )) +(1/2) Σ_(k=1) ^(k=n−1)  (1/(k(k+1)^2 ))  but  Σ_(k=1) ^(k=n−1)  (1/(k(k+1)^2 )) = Σ_(k=1) ^(k=n−1)  (1/k) −Σ_(k=1) ^(n−1)  (1/(k+1)) −Σ_(k=1) ^(k=n−1) (1/((k+1)^2 ))  after all calculus we find   S_n  = (1/2) Σ_(k=1) ^(k=n)  (1/k^2 ) −(1/2)( H_n  −H_(n−1)   )but  lim_(n−>∝) H_n −H_(n−1)   =0  and lim_(n−>∝) Σ_(k=1) ^(k=n)   (1/k^2 )= (π^2 /6)  ⇒lim_(n−>∝)   S_n  = I=  (π^2 /(12))  .
letputI=01xE(1x)dxandbythechangement1x=tI=1E(t)t3dt=limn>∝SnwithSn=k=1k=n1kk+1E(t)t3dtSn=k=1k=n1k.kk+1dtt3=12k=1k=n1k(1k21(k+1)2)=12k=1k=n12k+1k(k+1)2=k=1k=n11(k+1)2+12k=1k=n11k(k+1)2butk=1k=n11k(k+1)2=k=1k=n11kk=1n11k+1k=1k=n11(k+1)2afterallcalculuswefindSn=12k=1k=n1k212(HnHn1)butlimn>∝HnHn1=0andlimn>∝k=1k=n1k2=π26limn>∝Sn=I=π212.

Leave a Reply

Your email address will not be published. Required fields are marked *