find-the-value-of-0-2pi-dx-cos-2-x-3-sin-2-x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 36197 by prof Abdo imad last updated on 30/May/18 findthevalueof∫02πdxcos2x+3sin2x Commented by maxmathsup by imad last updated on 14/Aug/18 letA=∫02πdxcos2x+3sin2xA=∫02πdx1+cos(2x)2+1−sin(2x)2=∫02π2dx2+cos(2x)−sin(2x)=2x=t∫04πdt2+cost−sint=∫02πdt2+cost−sint+∫2π4πdt2+cost−sintbut∫2π4πdt2+cost−sint=t=2π+α∫02πdα2+cosα−sinα⇒A=∫02π2dt2+cost−sintchangementeit=zgiveA=∫∣z∣=122+z+z−12+z−z−12idziz=∫∣z∣=14dziz(4+z+z−1−i(z−z−))=∫∣z∣=1−4idz4z+z2+1−iz2+i=∫∣z∣=1−4iz(1−i)z2+4z+1+iletconsiderthecompolexfunctionφ(z)=−4i(1−i)z2+4z+1+ipolesofφ?Δ′=4−(1−i)(1+i)=4−2=2⇒z1=−2+21−i=2(1−2)2e−iπ4=(1−2)eiπ4z2=−2−21−i=2(−1−2)2e−iπ4=(−1−2)eiπ4∣z1∣=2−1<1and∣z2∣=2+1>1(toeliminatefromresidus)⇒∫∣z∣=1φ(z)dz=2iπRes(φ,z1)butφ(z)=−4i(1−i)(z−z1)(z−z2)Res(φ,z1)=−4i(1−i)(z1−z2)=−4i(1−i)2eiπ4=−2i2=−i2⇒∫∣z∣=1φ(z)dz=2iπ(−i2)=2π2⇒A=2π2⇒A=π2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Version-2-091-is-available-Slightly-darker-characters-are-used-by-default-A-preference-setting-is-available-to-revert-to-previous-font-Change-setting-and-restart-app-A-new-menuNext Next post: let-f-z-z-2-1-z-4-1-find-a-k-the-poles-of-f-and-calculate-Res-f-a-k- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.