Menu Close

find-the-value-of-0-2pi-dx-cos-2-x-3-sin-2-x-




Question Number 36197 by prof Abdo imad last updated on 30/May/18
find the value of   ∫_0 ^(2π)      (dx/(cos^2 x +3 sin^2 x))
findthevalueof02πdxcos2x+3sin2x
Commented by maxmathsup by imad last updated on 14/Aug/18
let  A = ∫_0 ^(2π)     (dx/(cos^2 x +3sin^2 x))  A = ∫_0 ^(2π)    (dx/(((1+cos(2x))/2)+((1−sin(2x))/2))) = ∫_0 ^(2π)     ((2dx)/(2  +cos(2x)−sin(2x)))  =_(2x=t)     ∫_0 ^(4π)     (dt/(2+cost −sint)) = ∫_0 ^(2π)    (dt/(2+cost −sint)) + ∫_(2π) ^(4π)     (dt/(2+cost−sint))  but ∫_(2π) ^(4π)     (dt/(2+cost −sint)) =_(t=2π +α)       ∫_0 ^(2π)    (dα/(2+cosα−sinα)) ⇒  A =  ∫_0 ^(2π)      ((2dt)/(2+cost −sint))  changement e^(it)  =z give  A = ∫_(∣z∣=1)     (2/(2 +((z+z^(−1) )/2) +((z−z^(−1) )/(2i)))) (dz/(iz))  = ∫_(∣z∣=1)       ((4dz)/(iz(4 +z +z^(−1)  −i(z−z^− )))) = ∫_(∣z∣=1)     ((−4idz)/(4z +z^2  +1 −iz^2  +i))  =  ∫_(∣z∣=1)      ((−4iz)/((1−i)z^2  +4z +1+i))  let consider the compolex function  ϕ(z) = ((−4i)/((1−i)z^2  +4z +1+i))  poles of ϕ?  Δ^′  =4 −(1−i)(1+i) =4−2=2 ⇒ z_1 =((−2 +(√2))/(1−i)) =(((√2)(1−(√2)))/( (√2)e^(−((iπ)/4)) )) =(1−(√2))e^((iπ)/4)   z_2 = ((−2−(√2))/(1−i)) =(((√2)(−1−(√2)))/( (√2)e^(−((iπ)/4)) )) =(−1−(√2)) e^((iπ)/4)   ∣z_1 ∣ =(√2)−1<1  and  ∣z_2 ∣ =(√2)+1 >1 (to eliminate from residus) ⇒  ∫_(∣z∣=1)  ϕ(z)dz =2iπ Res(ϕ,z_1 )  but  ϕ(z) =((−4i)/((1−i)(z−z_1 )(z−z_2 )))  Res(ϕ,z_1 ) =((−4i)/((1−i)(z_1 −z_2 ))) = ((−4i)/((1−i)2 e^(i(π/4)) )) = ((−2i)/( (√2))) =((−i)/( (√2))) ⇒  ∫_(∣z∣=1 )   ϕ(z)dz =2iπ(((−i)/( (√2)))) =((2π)/( (√2))) ⇒ A = ((2π)/( (√2)))  ⇒ A =π(√2).
letA=02πdxcos2x+3sin2xA=02πdx1+cos(2x)2+1sin(2x)2=02π2dx2+cos(2x)sin(2x)=2x=t04πdt2+costsint=02πdt2+costsint+2π4πdt2+costsintbut2π4πdt2+costsint=t=2π+α02πdα2+cosαsinαA=02π2dt2+costsintchangementeit=zgiveA=z∣=122+z+z12+zz12idziz=z∣=14dziz(4+z+z1i(zz))=z∣=14idz4z+z2+1iz2+i=z∣=14iz(1i)z2+4z+1+iletconsiderthecompolexfunctionφ(z)=4i(1i)z2+4z+1+ipolesofφ?Δ=4(1i)(1+i)=42=2z1=2+21i=2(12)2eiπ4=(12)eiπ4z2=221i=2(12)2eiπ4=(12)eiπ4z1=21<1andz2=2+1>1(toeliminatefromresidus)z∣=1φ(z)dz=2iπRes(φ,z1)butφ(z)=4i(1i)(zz1)(zz2)Res(φ,z1)=4i(1i)(z1z2)=4i(1i)2eiπ4=2i2=i2z∣=1φ(z)dz=2iπ(i2)=2π2A=2π2A=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *