find-the-value-of-0-arctan-2x-a-2-x-2-dx-with-a-0- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 33259 by prof Abdo imad last updated on 14/Apr/18 findthevalueof∫0∞arctan(2x)a2+x2dxwitha≠0 Commented by prof Abdo imad last updated on 27/Apr/18 letputI=∫0∞arctan(2x)a2+x2dxifa>0ch.x=atgiveI=∫0∞arctan(2at)a2(1+t2)adt=1a∫0∞arctan(2at)1+t2dt⇒aI=∫0∞arctan(2at)1+t2dt=f(a)wehavef′(a)=∫0∞2t(1+4a2t2)(1+t2)dtletdecomposeF(t)=2t(1+4a2t2)(1+t2)=αt+bt2+1+ct+d4a2t2+1F(−t)=−F(t)⇒−αt+bt2+1+−ct+d4a2t2+1=−αt−bt2+1+−ct−d4a2t2+1⇒b=d=0⇒F(t)=αtt2+1+ct4a2t2+1limt→+∞tF(t)=0=α+c4a2⇒4a2α+c=0⇒c=−4a2α⇒F(t)=αtt2+1−4a2αt4a2t2+1F(1)=2(1+4a2)2=14a2+1=α2−4a2α4a2+1⇒1=12(4a2+1)α−4a2α=(2a2+12−4a2)α=(12−2a2)α=1−4a22α⇒α=21−4a2F(t)=21−4a2tt2+1−4a221−4a2t4a2t2+1F(t)=21−4a2tt2+1−8a21−4a2t4a2t2+1f′(a)=11−4a2∫0∞2tdtt2+1−8a21−4a2∫0∞tdt4a2t2+1but∫0∞tdt4a2t2+1=18a2∫0∞8a2t4a2t2+1f′(a)=11−4a2[ln(1+t24a2t2+1)]0+∞=11−4a2ln(14a2)=−ln(4a2)1−4a2⇒f(a)=∫0a−ln(4x2)1−4x2dx+λbutλ=f(0)=0⇒f(a)=−∫0a2ln(2x)1−4x2dx−f(a)=2x=t2∫02aln(t)1−t2dt2=∫02aln(t)1−t2dtif0<2a<1⇔0<a<12∫02aln(t)1−t2dt=∫02a(∑n=0∞t2n)ln(t)dt=∑n=0∞∫02at2nln(t)dt=∑n=0∞AnAn=∫02at2nln(t)dtbecalculatedbyrecurrence….becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-n-0-cos-2n-x-n-e-1-4-Next Next post: In-AB-C-cos-2-A-cos-2-B-cos-2-C-1-Prove-that-AB-C-is-right-angled- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.