Menu Close

find-the-value-of-0-arctan-2x-a-2-x-2-dx-with-a-0-




Question Number 33259 by prof Abdo imad last updated on 14/Apr/18
find the value of  ∫_0 ^∞    ((arctan(2x))/(a^2  +x^2 )) dx with a≠0
findthevalueof0arctan(2x)a2+x2dxwitha0
Commented by prof Abdo imad last updated on 27/Apr/18
let put  I= ∫_0 ^∞   ((arctan(2x))/(a^2  +x^2 ))dx  if a>0  ch.x=at give   I = ∫_0 ^∞   ((arctan(2at))/(a^2 (1+t^2 ))) adt = (1/a)∫_0 ^∞    ((arctan(2at))/(1+t^2 ))dt  ⇒aI = ∫_0 ^∞   ((arctan(2at))/(1+t^2 ))dt =f(a) we have  f^′ (a) = ∫_0 ^∞         ((2t)/((1+4a^2 t^2 )(1+t^2 )))dt  let decompose  F(t) =  ((2t)/((1+4a^2 t^2 )(1+t^2 ))) = ((αt +b)/(t^2 +1)) + ((ct +d)/(4a^2 t^2  +1))  F(−t)=−F(t) ⇒((−αt+b)/(t^2 +1)) +((−ct +d)/(4a^2 t^2 +1))  =((−αt−b)/(t^2  +1)) +((−ct −d)/(4a^2 t^2  +1)) ⇒ b=d=0 ⇒  F(t)= ((αt)/(t^2 +1))  +((ct)/(4a^2 t^2  +1))  lim_(t→+∞) t F(t) =0 =α +(c/(4a^2 )) ⇒4a^2 α +c =0 ⇒  c=−4a^2 α ⇒F(t)= ((αt)/(t^2 +1)) −4a^2   ((αt)/(4a^2 t^2 +1))  F(1) = (2/((1+4a^2 )2)) =(1/(4a^2 +1)) = (α/2) −((4a^2 α)/(4a^2 +1)) ⇒  1 =(1/2)(4a^2 +1)α −4a^2 α =(2a^2  +(1/2)−4a^2 )α  =((1/2) −2a^2 )α =((1−4a^2 )/2) α ⇒α= (2/(1−4a^2 ))  F(t) =(2/(1−4a^2 )) (t/(t^2  +1)) −4a^2  (2/(1−4a^2 ))  (t/(4a^2 t^2  +1))  F(t) = (2/(1−4a^2 )) (t/(t^2 +1)) −((8a^2 )/(1−4a^2 ))  (t/(4a^2 t^2 +1))  f^′ (a) = (1/(1−4a^2 )) ∫_0 ^∞  ((2tdt)/(t^2  +1))  −((8a^2 )/(1−4a^2 ))∫_0 ^∞  ((tdt)/(4a^2 t^2  +1))  but  ∫_0 ^∞   ((tdt)/(4a^2 t^2  +1)) =(1/(8a^2 ))∫_0 ^∞  ((8a^2 t)/(4a^2 t^2  +1))  f^′ (a)= (1/(1−4a^2 ))[ln(((1+t^2 )/(4a^2 t^2 +1)))]_0 ^(+∞)  =(1/(1−4a^2 ))ln((1/(4a^2 )))  = ((−ln(4a^2 ))/(1−4a^2 )) ⇒f(a) = ∫_0 ^a   ((−ln(4x^2 ))/(1−4x^2 ))dx +λ  but λ =f(0)=0 ⇒f(a) =−∫_0 ^(a ) ((2ln(2x))/(1−4x^2 ))dx  −f(a)=_(2x=t)   2 ∫_0 ^(2a)    ((ln(t))/(1−t^2 )) (dt/2) = ∫_0 ^(2a)   ((ln(t))/(1−t^2 ))dt  if0 <2a<1 ⇔ 0<a<(1/2)  ∫_0 ^(2a)   ((ln(t))/(1−t^2 ))dt = ∫_0 ^(2a) (Σ_(n=0) ^∞  t^(2n) )ln(t)dt  = Σ_(n=0) ^∞   ∫_0 ^(2a)  t^(2n)  ln(t)dt  =Σ_(n=0) ^∞  A_n   A_n =∫_0 ^(2a)  t^(2n) ln(t)dt  be calculated by recurrence  ....be continued....
letputI=0arctan(2x)a2+x2dxifa>0ch.x=atgiveI=0arctan(2at)a2(1+t2)adt=1a0arctan(2at)1+t2dtaI=0arctan(2at)1+t2dt=f(a)wehavef(a)=02t(1+4a2t2)(1+t2)dtletdecomposeF(t)=2t(1+4a2t2)(1+t2)=αt+bt2+1+ct+d4a2t2+1F(t)=F(t)αt+bt2+1+ct+d4a2t2+1=αtbt2+1+ctd4a2t2+1b=d=0F(t)=αtt2+1+ct4a2t2+1limt+tF(t)=0=α+c4a24a2α+c=0c=4a2αF(t)=αtt2+14a2αt4a2t2+1F(1)=2(1+4a2)2=14a2+1=α24a2α4a2+11=12(4a2+1)α4a2α=(2a2+124a2)α=(122a2)α=14a22αα=214a2F(t)=214a2tt2+14a2214a2t4a2t2+1F(t)=214a2tt2+18a214a2t4a2t2+1f(a)=114a202tdtt2+18a214a20tdt4a2t2+1but0tdt4a2t2+1=18a208a2t4a2t2+1f(a)=114a2[ln(1+t24a2t2+1)]0+=114a2ln(14a2)=ln(4a2)14a2f(a)=0aln(4x2)14x2dx+λbutλ=f(0)=0f(a)=0a2ln(2x)14x2dxf(a)=2x=t202aln(t)1t2dt2=02aln(t)1t2dtif0<2a<10<a<1202aln(t)1t2dt=02a(n=0t2n)ln(t)dt=n=002at2nln(t)dt=n=0AnAn=02at2nln(t)dtbecalculatedbyrecurrence.becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *