Menu Close

find-the-value-of-0-arctan-x-1-x-2-2-dx-




Question Number 34561 by math khazana by abdo last updated on 08/May/18
find the value  of  ∫_0 ^(+∞)   ((arctan(x))/((1+x^2 )^2 )) dx
$${find}\:{the}\:{value}\:\:{of}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{arctan}\left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx} \\ $$
Commented by math khazana by abdo last updated on 09/May/18
∫_0 ^∞   ((arctanx)/((1+x^2 )^2 ))dx = [(1/(4 )) (arctanx)^2  +(1/4) sin(2arctanx)]_0 ^(+∞)   = (1/4)( (π/2))^2  +0  = (π^2 /(16))  .
$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctanx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:=\:\left[\frac{\mathrm{1}}{\mathrm{4}\:}\:\left({arctanx}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{4}}\:{sin}\left(\mathrm{2}{arctanx}\right)\right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\left(\:\frac{\pi}{\mathrm{2}}\right)^{\mathrm{2}} \:+\mathrm{0}\:\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{16}}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *