Menu Close

find-the-value-of-0-arctan-x-1-x-4-dx-




Question Number 52418 by Abdo msup. last updated on 07/Jan/19
find the value of ∫_0 ^∞   ((arctan(x))/(1+x^4 )) dx
findthevalueof0arctan(x)1+x4dx
Commented by maxmathsup by imad last updated on 08/Jan/19
let f(t)=∫_0 ^∞   ((arctan(tx))/(1+x^4 ))dx  ⇒f^′ (t)=∫_0 ^∞   (x/((1+x^2 t^2 )(1+x^4 )))dx  =_(xt=u)   ∫_0 ^∞      (u/(t(1+u^2 )(1+(u^4 /t^4 )))) (du/t) =∫_0 ^∞    (u/((1+u^2 )(t^2  +(u^4 /t^2 ))))du  =t^2  ∫_0 ^∞     (u/((u^2 +1)(u^4 +t^4 )))du   let decompose F(u)=(u/((u^2  +1)(u^4  +t^4 )))  F(u) =(u/((u^2  +1)((u^2 +t^2 )^2 −2u^2 t^2 ))) =(u/((u^2  +1)(u^2 +t^2 −(√2)tu)(u^2  +t^2  +(√2)tu)))  =((au +b)/(u^2  +1)) +((cu+d)/(u^2 −(√2)tu +t^2 )) +((eu +f)/(u^2  +(√2)tu +t^2 ))  F(−u)=−F(u)⇒((−au+b)/(u^2  +1)) +((−cu+d)/(u^2 +(√2)tu +t^2 )) +((−eu +f)/(u^2 −(√2)tu +t^2 ))  =((−au−b)/(u^2  +1)) +((−cu−d)/(u^2 −(√2)tu +t^2 )) +((−eu −f)/(u^2  +(√2)tu +t^2 )) ⇒  b=0 and  c=e   and f=−d ⇒  F(u)=((au)/(u^2  +1)) +((cu+d)/(u^2 −(√2)tu +t^2 )) +((cu−d)/(u^2 +(√2)tu +t^2 ))  lim_(u→+∞) uF(u)=0 =a +2c ⇒c=−(a/2) ⇒  F(u)=((au)/(u^2  +1)) −(1/2)  ((au−2d)/(u^2 −(√2)tu +t^2 )) −(1/2) ((au+2d)/(u^2 +(√2)tu +t^2 ))  F(1) =(1/(2(1+t^4 ))) =(a/2) −(1/2) ((a−2d)/(1+t^2 −(√2)t)) −(1/2) ((a+2d)/(1+t^2 +(√2)t))  F(−1) =((−1)/(2(1+t^4 ))) −(1/2) ((a−2d)/(1+t^2 +(√2)t)) −(1/2) ((−a+2d)/(1+t^2 −(√2)t))  ....be continued...
letf(t)=0arctan(tx)1+x4dxf(t)=0x(1+x2t2)(1+x4)dx=xt=u0ut(1+u2)(1+u4t4)dut=0u(1+u2)(t2+u4t2)du=t20u(u2+1)(u4+t4)duletdecomposeF(u)=u(u2+1)(u4+t4)F(u)=u(u2+1)((u2+t2)22u2t2)=u(u2+1)(u2+t22tu)(u2+t2+2tu)=au+bu2+1+cu+du22tu+t2+eu+fu2+2tu+t2F(u)=F(u)au+bu2+1+cu+du2+2tu+t2+eu+fu22tu+t2=aubu2+1+cudu22tu+t2+eufu2+2tu+t2b=0andc=eandf=dF(u)=auu2+1+cu+du22tu+t2+cudu2+2tu+t2limu+uF(u)=0=a+2cc=a2F(u)=auu2+112au2du22tu+t212au+2du2+2tu+t2F(1)=12(1+t4)=a212a2d1+t22t12a+2d1+t2+2tF(1)=12(1+t4)12a2d1+t2+2t12a+2d1+t22t.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *