Menu Close

find-the-value-of-0-arctanx-x-2-x-1-dx-




Question Number 31967 by abdo imad last updated on 17/Mar/18
find the value of  ∫_0 ^∞   ((arctanx)/(x^2  +x+1))dx .
findthevalueof0arctanxx2+x+1dx.
Commented by abdo imad last updated on 19/Mar/18
let put I =∫_0 ^∞   ((arctanx)/(x^2  +x+1))dx  .ch.x=(1/t)  give  I = ∫_0 ^∞      (((π/2) −arctant)/((1/t^2 ) +(1/t) +1)) (dt/t^2 ) = ∫_0 ^∞  (((π/2) −arctant)/(1+t +t^2 )) dt  =(π/2) ∫_0 ^∞   (dt/(t^(2 )  +t +1)) −I ⇒ 2I= (π/2) ∫_0 ^∞   (dt/(t^2  +t+1)) ⇒  I =(π/4) ∫_0 ^∞   (dt/(t^2  +t +1))  .but  ∫_0 ^∞     (dt/(t^2  +t +1)) = ∫_0 ^∞    (dt/((t+(1/2))^2  +(3/4)))(  .ch.t+(1/2) =((√3)/2) u)  =  ∫_(1/( (√3))) ^(+∞)      (1/((3/4)(t^(2 )  +1))) ((√3)/2) du = (4/3) ((√3)/2)  ∫_(1/( (√3))) ^(+∞)    (du/(1+u^2 ))  =((2(√3))/3) [arctan(u)]_((1/( (√3))) ) ^∞  =((2(√3))/3) ( (π/2) −arctan((1/( (√3)))))  =((2(√3))/3) arctan((√3))=((2(√3))/3) (π/3) =((2π(√3))/9) ⇒  I =(π/4) ((2π(√3))/9) = ((π^2  (√3))/(18)) .
letputI=0arctanxx2+x+1dx.ch.x=1tgiveI=0π2arctant1t2+1t+1dtt2=0π2arctant1+t+t2dt=π20dtt2+t+1I2I=π20dtt2+t+1I=π40dtt2+t+1.but0dtt2+t+1=0dt(t+12)2+34(.ch.t+12=32u)=13+134(t2+1)32du=433213+du1+u2=233[arctan(u)]13=233(π2arctan(13))=233arctan(3)=233π3=2π39I=π42π39=π2318.

Leave a Reply

Your email address will not be published. Required fields are marked *