find-the-value-of-0-arctanx-x-2-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 31967 by abdo imad last updated on 17/Mar/18 findthevalueof∫0∞arctanxx2+x+1dx. Commented by abdo imad last updated on 19/Mar/18 letputI=∫0∞arctanxx2+x+1dx.ch.x=1tgiveI=∫0∞π2−arctant1t2+1t+1dtt2=∫0∞π2−arctant1+t+t2dt=π2∫0∞dtt2+t+1−I⇒2I=π2∫0∞dtt2+t+1⇒I=π4∫0∞dtt2+t+1.but∫0∞dtt2+t+1=∫0∞dt(t+12)2+34(.ch.t+12=32u)=∫13+∞134(t2+1)32du=4332∫13+∞du1+u2=233[arctan(u)]13∞=233(π2−arctan(13))=233arctan(3)=233π3=2π39⇒I=π42π39=π2318. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-n-n-0-1-x-sin-2n-2pix-dx-Next Next post: find-2-5-x-x-2-5-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.