Question Number 25762 by abdo imad last updated on 14/Dec/17
$${find}\:{the}\:{value}\:{of}\int_{\mathrm{0}} ^{\infty} \:{artan}\left(\mathrm{2}{x}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}_{} } \:\:{the}\:{key}\:{of}\:{slution}\:{put}\:{F}\left({t}\right)=\int_{\mathrm{0}} ^{\infty} \:{artan}\left({xt}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} \:\:\:{find}\:\partial{F}/\partial{t}\:{first}\:{then}\:{F}\left({t}\right)\:{and}\:{take}\:{t}=\mathrm{2}\:{you}\:{will}\:{of}\:{find}\:{find}\:{the}\:{value}\:{of}\:{integral}.. \\ $$