Menu Close

find-the-value-of-0-cos-2x-1-x-2-2-dx-




Question Number 27619 by abdo imad last updated on 11/Jan/18
find the value of ∫_0 ^∞  ((cos(2x))/((1+x^2 )^2 ))dx.
findthevalueof0cos(2x)(1+x2)2dx.
Commented by abdo imad last updated on 12/Jan/18
let put I= ∫_0 ^∞  ((cos(2x))/((1+x^2 )^2 ))dx  I= (1/2) ∫_R   ((cos(2x))/((1+x^2 )^2 ))dx=(1/2) Re( ∫_R   (e^(i2x) /((1+x^2 )^2 ))dx )  let introduce  the complex function  f(z)= (e^(i(2z)) /((1+z^2 )^2 )) we have  f(z)=  (e^(i(2z)) /((z−i)^2 (z+i)^2 )) so the poles  of f are i and −i (double poles)  ∫_R f(z)dz= 2iπ Res(f,i)(   we dont take −i because Im(−i)<0)  Re(f,i) =lim_(z−>i)    (1/((2−1)!)) (d/dz)( (z−i)^2 f(z))  =lim_(z−>i ) (d/dz)((e^(i(2z)) /((z+i)^2 )))=  =lim_(z−>i)       ((2i e^(i(2z)) (z+i)^2  −2(z+i) e^(i(2z)) )/((z+i)^4 ))  =lim_(z−>i)        ((2i e^(i(2z)) (z+i) −2 e^(i(2z)) )/((z+i)^3 ))  =     ((2i e^(−2) (2i) −2 e^(−2) )/((2i)^3 ))=  ((−4 e^(−2) −2 e^(−2) )/(−8i))=((6 e^(−2) )/(8i)) = ((3 e^(−2) )/(4i))  ∫_R f(z)dz= 2iπ.((3 e^(−2) )/(4i))  = ((3π)/2) e^(−2)   I= (1/2) ∫_R ^ f(z)dz = ((3π)/4) e^(−2) = ((3π)/(4 e^2 )) .
letputI=0cos(2x)(1+x2)2dxI=12Rcos(2x)(1+x2)2dx=12Re(Rei2x(1+x2)2dx)letintroducethecomplexfunctionf(z)=ei(2z)(1+z2)2wehavef(z)=ei(2z)(zi)2(z+i)2sothepolesoffareiandi(doublepoles)Rf(z)dz=2iπRes(f,i)(wedonttakeibecauseIm(i)<0)Re(f,i)=limz>i1(21)!ddz((zi)2f(z))=limz>iddz(ei(2z)(z+i)2)==limz>i2iei(2z)(z+i)22(z+i)ei(2z)(z+i)4=limz>i2iei(2z)(z+i)2ei(2z)(z+i)3=2ie2(2i)2e2(2i)3=4e22e28i=6e28i=3e24iRf(z)dz=2iπ.3e24i=3π2e2I=12Rf(z)dz=3π4e2=3π4e2.

Leave a Reply

Your email address will not be published. Required fields are marked *