Menu Close

find-the-value-of-0-cos-2x-x-4-x-2-1-dx-




Question Number 114933 by mathmax by abdo last updated on 22/Sep/20
find the value of ∫_0 ^∞     ((cos(2x))/(x^4  +x^2  +1))dx
findthevalueof0cos(2x)x4+x2+1dx
Answered by mathdave last updated on 22/Sep/20
solution  let  I=∫_0 ^∞ ((cos(2x))/(1+x^2 +x^4 ))dx=(1/2)∫_(−∞) ^∞ ((cos2x)/(1+x^2 +x^4 ))dx  2I=∫_(−∞) ^∞ ((e^(2ix) +e^(−2ix) )/(1+x^2 +x^4 ))dx=∫_(−∞) ^∞ (e^(2ix) /(1+x^2 +x^4 ))dx  let 1+x^2 +x^4 =(x^2 −x+1)(x^2 +x+1)  let the root of  x^2 −x+1=0 are  z_1 =(1/2)+i((√3)/2) and z_2 =(1/2)−i((√3)/2)  let the root of x^2 +x+1=0 are  z_3 =−(1/2)+i((√3)/2) and z_4 =−(1/2)−i((√3)/2)  by using the infinite semicycle on the  upperhalf plane as the contour,we have  the poles has z_1 =(1/2)+i((√3)/2) and z_3 =−(1/2)+i((√3)/2)  then apply residue theorem  let  f(z)=(e^(2iz) /(1+x^2 +x^4 ))=(e^(2iz) /((z−z_1 )(z−z_2 )(z−z_3 )(z−z_4 )))  by residue theorem  Res[f(z):z_1 ]=lim_(z→z_1 ) [(z−z_1 )f(z)]=(e^(2iz_1 ) /((z_1 −z_2 )(z_1 −z_3 )(z_1 −z_4 )))  =(e^(−(√3)+i) /(−3+i(√3)))=−(1/(12))(3+i(√3))e^(−(√3)+i) ......(1) and  Res[f(z):z_3 ]=lim_(z→z_3 ) [(z−z_3 )f(z)]=(e^(2iz_3 ) /((z_3 −z_1 )(z_3 −z_2 )(z_3 −z_4 )))  =(e^(−(√3)−i) /(3+i(√3)))=(1/(12))(3−i(√3))e^(−(√3)−i) .........(2) but  ∫_R f(z)dz=2πiΣResf(z)  2I=2πi[(1/(12))(3−i(√3))e^(−(√3)−i) −(1/(12))(3+i(√3))e^(−(√3)+i) ]  2I=((πe^(−(√3)) )/6)[(3i+(√3))e^(−i) −(3i−(√3))e^i ]  2I=((πe^(−(√3)) )/6)[−3i(e^i −e^(−i) )+(√3)(e^i +e^(−i) )]  2I=((πe^(−(√3)) )/6)[−((6i×i)/(2i))(e^i −e^(−i) )+((2(√3))/2)(e^i +e^(−i) )]  2I=((πe^(−(√3)) )/6)[6(((e^i −e^(−i) )/(2i)))+2(√3)(((e^i +e^(−i) )/2))]  2I=πe^(−(√3)) (sin(1)+(1/( (√3)))cos(1))  ∵I=(1/2)πe^(−(√3)) [sin(1)+((√3)/3)cos(1)]  ∫_0 ^∞ ((cos(2x))/(1+x^2 +x^4 ))dx=((πe^(−(√3)) )/6)[3sin(1)+(√3)cos(1)]  by mathdave(22/09/2020)
solutionletI=0cos(2x)1+x2+x4dx=12cos2x1+x2+x4dx2I=e2ix+e2ix1+x2+x4dx=e2ix1+x2+x4dxlet1+x2+x4=(x2x+1)(x2+x+1)lettherootofx2x+1=0arez1=12+i32andz2=12i32lettherootofx2+x+1=0arez3=12+i32andz4=12i32byusingtheinfinitesemicycleontheupperhalfplaneasthecontour,wehavethepoleshasz1=12+i32andz3=12+i32thenapplyresiduetheoremletf(z)=e2iz1+x2+x4=e2iz(zz1)(zz2)(zz3)(zz4)byresiduetheoremRes[f(z):z1]=limzz1[(zz1)f(z)]=e2iz1(z1z2)(z1z3)(z1z4)=e3+i3+i3=112(3+i3)e3+i(1)andRes[f(z):z3]=limzz3[(zz3)f(z)]=e2iz3(z3z1)(z3z2)(z3z4)=e3i3+i3=112(3i3)e3i(2)butRf(z)dz=2πiΣResf(z)2I=2πi[112(3i3)e3i112(3+i3)e3+i]2I=πe36[(3i+3)ei(3i3)ei]2I=πe36[3i(eiei)+3(ei+ei)]2I=πe36[6i×i2i(eiei)+232(ei+ei)]2I=πe36[6(eiei2i)+23(ei+ei2)]2I=πe3(sin(1)+13cos(1))I=12πe3[sin(1)+33cos(1)]0cos(2x)1+x2+x4dx=πe36[3sin(1)+3cos(1)]bymathdave(22/09/2020)
Commented by mathmax by abdo last updated on 23/Sep/20
thank you sir
thankyousir
Commented by mathdave last updated on 23/Sep/20
u re welcome
urewelcome
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir
Answered by mathmax by abdo last updated on 27/Sep/20
A =∫_0 ^∞  ((cos(2x))/(x^4  +x^2  +1))dx ⇒A =(1/2)∫_(−∞) ^(+∞)  ((cos(2x))/(x^4  +x^2  +1))dx  ⇒2A =Re(∫_(−∞) ^(+∞)  (e^(2ix) /(x^4  +x^2  +1))dx) let ϕ(z) =(e^(2iz) /(z^4  +z^2  +1))  polesof ϕ?  u^2 +u+1 =0  withu=z^2   Δ =−3 ⇒u_1 =((−1+i(√3))/2) =e^(i((2π)/3))   and u_2 =((−1−i(√3))/2) =e^(−((i2π)/3))   ⇒ϕ(z) =(e^(2iz) /((z^2 −e^((i2π)/3) )(z^2 −e^(−((i2π)/3)) ))) =(e^(2iz) /((z−e^((iπ)/3) )(z+e^((iπ)/3) )(z−e^(−((iπ)/3)) )(z+e^(−((iπ)/3)) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,e^((iπ)/3) ) +Res(ϕ,−e^(−((iπ)/3)) )}  Res(ϕ,e^((iπ)/3) ) =(e^(2ie^((iπ)/3) ) /(2e^((iπ)/3) (2isin(((2π)/3))))) =(e^(2i((1/2)+i((√3)/2))) /(4i.((√3)/2))) ×e^(−((iπ)/3))   =((e^i  .e^(−(√3)) )/(2i(√3))).e^(−((iπ)/3))   Res(ϕ,−e^(−((iπ)/3)) ) =(e^(−2i e^(−((iπ)/3)) ) /(−2e^(−((iπ)/3)) (−2isin(((2π)/3))))) =(e^(−2i((1/2)−((i(√3))/2))) /(4i.((√3)/2)))×e^((iπ)/3)   =((e^(−i)  .e^(−(√3)) )/(2i(√3)))×e^((iπ)/3)  ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ (e^(−(√3)) /(2i(√3)))( e^(i−((iπ)/3)) + e^(−i+((iπ)/3)) )}  =(π/( (√3))) e^(−(√3))  { e^((1−(π/3))i)  +e^(−(1−(π/3))i) } =((2π)/( (√3))) e^(−(√3)) cos(1−(π/3)) ⇒  2A =((2π)/( (√3)))e^(−(√3)) cos(1−(π/3)) ⇒ ★A =(π/( (√3))) e^(−(√3)) cos(1−(π/3))★
A=0cos(2x)x4+x2+1dxA=12+cos(2x)x4+x2+1dx2A=Re(+e2ixx4+x2+1dx)letφ(z)=e2izz4+z2+1polesofφ?u2+u+1=0withu=z2Δ=3u1=1+i32=ei2π3andu2=1i32=ei2π3φ(z)=e2iz(z2ei2π3)(z2ei2π3)=e2iz(zeiπ3)(z+eiπ3)(zeiπ3)(z+eiπ3)+φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,eiπ3)}Res(φ,eiπ3)=e2ieiπ32eiπ3(2isin(2π3))=e2i(12+i32)4i.32×eiπ3=ei.e32i3.eiπ3Res(φ,eiπ3)=e2ieiπ32eiπ3(2isin(2π3))=e2i(12i32)4i.32×eiπ3=ei.e32i3×eiπ3+φ(z)dz=2iπ{e32i3(eiiπ3+ei+iπ3)}=π3e3{e(1π3)i+e(1π3)i}=2π3e3cos(1π3)2A=2π3e3cos(1π3)A=π3e3cos(1π3)

Leave a Reply

Your email address will not be published. Required fields are marked *