Question Number 114933 by mathmax by abdo last updated on 22/Sep/20

Answered by mathdave last updated on 22/Sep/20
![solution let I=∫_0 ^∞ ((cos(2x))/(1+x^2 +x^4 ))dx=(1/2)∫_(−∞) ^∞ ((cos2x)/(1+x^2 +x^4 ))dx 2I=∫_(−∞) ^∞ ((e^(2ix) +e^(−2ix) )/(1+x^2 +x^4 ))dx=∫_(−∞) ^∞ (e^(2ix) /(1+x^2 +x^4 ))dx let 1+x^2 +x^4 =(x^2 −x+1)(x^2 +x+1) let the root of x^2 −x+1=0 are z_1 =(1/2)+i((√3)/2) and z_2 =(1/2)−i((√3)/2) let the root of x^2 +x+1=0 are z_3 =−(1/2)+i((√3)/2) and z_4 =−(1/2)−i((√3)/2) by using the infinite semicycle on the upperhalf plane as the contour,we have the poles has z_1 =(1/2)+i((√3)/2) and z_3 =−(1/2)+i((√3)/2) then apply residue theorem let f(z)=(e^(2iz) /(1+x^2 +x^4 ))=(e^(2iz) /((z−z_1 )(z−z_2 )(z−z_3 )(z−z_4 ))) by residue theorem Res[f(z):z_1 ]=lim_(z→z_1 ) [(z−z_1 )f(z)]=(e^(2iz_1 ) /((z_1 −z_2 )(z_1 −z_3 )(z_1 −z_4 ))) =(e^(−(√3)+i) /(−3+i(√3)))=−(1/(12))(3+i(√3))e^(−(√3)+i) ......(1) and Res[f(z):z_3 ]=lim_(z→z_3 ) [(z−z_3 )f(z)]=(e^(2iz_3 ) /((z_3 −z_1 )(z_3 −z_2 )(z_3 −z_4 ))) =(e^(−(√3)−i) /(3+i(√3)))=(1/(12))(3−i(√3))e^(−(√3)−i) .........(2) but ∫_R f(z)dz=2πiΣResf(z) 2I=2πi[(1/(12))(3−i(√3))e^(−(√3)−i) −(1/(12))(3+i(√3))e^(−(√3)+i) ] 2I=((πe^(−(√3)) )/6)[(3i+(√3))e^(−i) −(3i−(√3))e^i ] 2I=((πe^(−(√3)) )/6)[−3i(e^i −e^(−i) )+(√3)(e^i +e^(−i) )] 2I=((πe^(−(√3)) )/6)[−((6i×i)/(2i))(e^i −e^(−i) )+((2(√3))/2)(e^i +e^(−i) )] 2I=((πe^(−(√3)) )/6)[6(((e^i −e^(−i) )/(2i)))+2(√3)(((e^i +e^(−i) )/2))] 2I=πe^(−(√3)) (sin(1)+(1/( (√3)))cos(1)) ∵I=(1/2)πe^(−(√3)) [sin(1)+((√3)/3)cos(1)] ∫_0 ^∞ ((cos(2x))/(1+x^2 +x^4 ))dx=((πe^(−(√3)) )/6)[3sin(1)+(√3)cos(1)] by mathdave(22/09/2020)](https://www.tinkutara.com/question/Q115007.png)
Commented by mathmax by abdo last updated on 23/Sep/20

Commented by mathdave last updated on 23/Sep/20

Commented by Tawa11 last updated on 06/Sep/21

Answered by mathmax by abdo last updated on 27/Sep/20
