Menu Close

find-the-value-of-0-cos-x-1-x-2-dx-




Question Number 26360 by abdo imad last updated on 24/Dec/17
  find the value of    ∫_0 ^( ∝ )  ((cos(αx))/(1+x^2 )) dx  .
$$\:\:{find}\:{the}\:{value}\:{of}\:\:\:\:\int_{\mathrm{0}} ^{\:\propto\:} \:\frac{{cos}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:\:. \\ $$
Commented by abdo imad last updated on 25/Dec/17
let put I=  ∫_0 ^∞  ((cos(αx))/(1+x^2 ))dx⇒      2I = ∫_R   ((cos(αx))/(1+x^2 ))dx  = Re(∫_R    (e^(iαx) /(1+x^2 ))dx)    and by residus therem  ∫_R  f(z)dz  =2iπ Res(f,i)      /f(z) = (e^(iαz) /(1+z^2 ))  Re(f,i)  = lim_(z−>i) (z−i)f(z)  =  (e^(−α) /(2i))    ∫_R f(z)dz  = 2iπ (e^(−α) /(2i))  =π e^(−α)    ⇒    ∫_0 ^∞   ((cos(αx))/(1+x^2 )) dx= (π/2) e^(−α)      .(look that  Im(  ∫_R   (e^(iαx) /(1+x^2 ))dx)=0)
$${let}\:{put}\:{I}=\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\Rightarrow\:\:\:\:\:\:\mathrm{2}{I}\:=\:\int_{\mathbb{R}} \:\:\frac{{cos}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\:{Re}\left(\int_{\mathbb{R}} \:\:\:\frac{{e}^{{i}\alpha{x}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\right)\:\:\:\:{and}\:{by}\:{residus}\:{therem} \\ $$$$\int_{\mathbb{R}} \:{f}\left({z}\right){dz}\:\:=\mathrm{2}{i}\pi\:{Res}\left({f},{i}\right)\:\:\:\:\:\:/{f}\left({z}\right)\:=\:\frac{{e}^{{i}\alpha{z}} }{\mathrm{1}+{z}^{\mathrm{2}} } \\ $$$${Re}\left({f},{i}\right)\:\:=\:{lim}_{{z}−>{i}} \left({z}−{i}\right){f}\left({z}\right)\:\:=\:\:\frac{{e}^{−\alpha} }{\mathrm{2}{i}} \\ $$$$\:\:\int_{\mathbb{R}} {f}\left({z}\right){dz}\:\:=\:\mathrm{2}{i}\pi\:\frac{{e}^{−\alpha} }{\mathrm{2}{i}}\:\:=\pi\:\overset{−\alpha} {{e}} \\ $$$$\:\Rightarrow\:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}=\:\frac{\pi}{\mathrm{2}}\:{e}^{−\alpha} \:\:\:\:\:.\left({look}\:{that}\:\:{Im}\left(\:\:\int_{\mathbb{R}} \:\:\frac{{e}^{{i}\alpha{x}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\right)=\mathrm{0}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *