Menu Close

find-the-value-of-0-cos-x-1-x-2-dx-




Question Number 26360 by abdo imad last updated on 24/Dec/17
  find the value of    ∫_0 ^( ∝ )  ((cos(αx))/(1+x^2 )) dx  .
findthevalueof0cos(αx)1+x2dx.
Commented by abdo imad last updated on 25/Dec/17
let put I=  ∫_0 ^∞  ((cos(αx))/(1+x^2 ))dx⇒      2I = ∫_R   ((cos(αx))/(1+x^2 ))dx  = Re(∫_R    (e^(iαx) /(1+x^2 ))dx)    and by residus therem  ∫_R  f(z)dz  =2iπ Res(f,i)      /f(z) = (e^(iαz) /(1+z^2 ))  Re(f,i)  = lim_(z−>i) (z−i)f(z)  =  (e^(−α) /(2i))    ∫_R f(z)dz  = 2iπ (e^(−α) /(2i))  =π e^(−α)    ⇒    ∫_0 ^∞   ((cos(αx))/(1+x^2 )) dx= (π/2) e^(−α)      .(look that  Im(  ∫_R   (e^(iαx) /(1+x^2 ))dx)=0)
letputI=0cos(αx)1+x2dx2I=Rcos(αx)1+x2dx=Re(Reiαx1+x2dx)andbyresidustheremRf(z)dz=2iπRes(f,i)/f(z)=eiαz1+z2Re(f,i)=limz>i(zi)f(z)=eα2iRf(z)dz=2iπeα2i=πeα0cos(αx)1+x2dx=π2eα.(lookthatIm(Reiαx1+x2dx)=0)

Leave a Reply

Your email address will not be published. Required fields are marked *