Menu Close

find-the-value-of-0-cos-x-x-2-1-x-2-2-x-2-3-dx-2-calculate-0-dx-x-2-1-x-2-2-x-2-3-




Question Number 34021 by prof Abdo imad last updated on 29/Apr/18
find the value of  ∫_0 ^(+∞)    ((cos(αx))/((x^2 +1)( x^2 +2)(x^2 +3)))dx  2) calculate  ∫_0 ^∞           (dx/((x^2 +1)(x^2  +2)(x^2 +3)))
findthevalueof0+cos(αx)(x2+1)(x2+2)(x2+3)dx2)calculate0dx(x2+1)(x2+2)(x2+3)
Commented by prof Abdo imad last updated on 30/Apr/18
let put I =∫_0 ^∞      ((cos(αx))/((x^2 +1)(x^2  +2)(x^2 +3{))dx  2I = ∫_(−∞) ^(+∞)   ((cos(αx))/((x^2 +1)(x^2 +2)(x^2 +3)))dx  =Re( ∫_(−∞) ^(+∞)    (e^(iαx) /((x^2 +1)(x^2 +2)(x^2 +3)))dx)let   consider the complex function  ϕ(z) =  (e^(iαz) /((z^2 +1)(z^2 +2)(z^2  +3))) the poles of ϕ are  i,−i,i(2)^(1/�)  ,−i(√2) ,i(√3),−i(√(3 ))  and  Residus theorem  give  ∫_(−∞) ^(+∞)      ϕ(z)dz =2iπ( Res(ϕ,i) +Res(ϕ,i(√2))+Res(ϕ,i(√3))  ϕ(z)= (e^(iαz) /((z−i)(z+i)(z−i(√2))(z+i(√2))(z−i(√3))(z+i(√3))))  Res(ϕ,i) =   (e^(−α) /(2i(−1+2)(−1+3))) = (e^(−α) /(4i))  Res(ϕ,i(√2)) =  (e^(−α(√2)) /((2i(√2))(−2+1)(−2+3)))  =− (e^(−α(√2)) /(2i(√2)))  Res(ϕ,i(√3)) =   (e^(−α(√3)) /(2i(√3)(−3+1)(−3+2)))  = (e^(−α(√3)) /(4i(√3)))  ∫_(−∞) ^(+∞)  ϕ(z)dz = 2iπ(   (e^(−α) /(4i))  − (e^(−α(√2)) /(2i(√2)))  +(e^(−α(√3)) /(4i(√3))))  =(π/2) e^(−α)    −(π/( (√2))) e^(−α(√2))    +(π/(2(√3))) e^(−α(√3))  ⇒  I = (π/4) e^(−α)   −(π/(2(√2))) e^(−α(√2))   + (π/(4(√3))) e^(−α(√3))  .
letputI=0cos(αx)(x2+1)(x2+2)(x2+3{dx2I=+cos(αx)(x2+1)(x2+2)(x2+3)dx=Re(+eiαx(x2+1)(x2+2)(x2+3)dx)letconsiderthecomplexfunctionφ(z)=eiαz(z2+1)(z2+2)(z2+3)thepolesofφarei,i,i2,i2,i3,i3andResidustheoremgive+φ(z)dz=2iπ(Res(φ,i)+Res(φ,i2)+Res(φ,i3)φ(z)=eiαz(zi)(z+i)(zi2)(z+i2)(zi3)(z+i3)Res(φ,i)=eα2i(1+2)(1+3)=eα4iRes(φ,i2)=eα2(2i2)(2+1)(2+3)=eα22i2Res(φ,i3)=eα32i3(3+1)(3+2)=eα34i3+φ(z)dz=2iπ(eα4ieα22i2+eα34i3)=π2eαπ2eα2+π23eα3I=π4eαπ22eα2+π43eα3.
Commented by abdo imad last updated on 30/Apr/18
2) let take α=0 ⇒  ∫_0 ^∞      (dx/((x^2 +1)(x^2 +2)(x^2 +3))) =(π/4) −(π/(2(√2))) +(π/(4(√3))) .
2)lettakeα=00dx(x2+1)(x2+2)(x2+3)=π4π22+π43.
Answered by tanmay.chaudhury50@gmail.com last updated on 30/Apr/18
∫_0 ^∞ (1/((x^2 +3))).(((x^2 +2)−(x^2 +1))/((x^2 +2)(x^2 +1)))dx  ∫_0 ^∞ (1/((x^2 +3))).(1/((x^2 +1)))dx−∫_0 ^∞ (1/((x^2 +3))).(1/((x^2 +2)))dx
01(x2+3).(x2+2)(x2+1)(x2+2)(x2+1)dx01(x2+3).1(x2+1)dx01(x2+3).1(x2+2)dx
Commented by tanmay.chaudhury50@gmail.com last updated on 30/Apr/18
1/2∫_0 ^∞ {(1/((x^2 +1)))−(1/((x^2 +3)))}dx −∫_0 ^∞ ((1/(x^2 +2))−(1/(x^2 +3)))._ dx  first intregl1/2{tan^(−1) x −(1/( (√3)))tan^(−1) ((x/( (√3))))}  second  1/(√2)tan^(−1) (x/(√(2))) −1/(√3) tan^(−1) (x/(√3) )  add them ...
1/20{1(x2+1)1(x2+3)}dx0(1x2+21x2+3).dxfirstintregl1/2{tan1x13tan1(x3)}second1/2tan1(x/2)1/3tan1(x/3)addthem

Leave a Reply

Your email address will not be published. Required fields are marked *