Menu Close

find-the-value-of-0-cos-xt-t-2-x-2-2-dt-




Question Number 33737 by prof Abdo imad last updated on 23/Apr/18
find the value of  ∫_0 ^∞     ((cos(xt))/((t^2  + x^2 )^2 )) dt .
findthevalueof0cos(xt)(t2+x2)2dt.
Commented by prof Abdo imad last updated on 23/Apr/18
let put f(x)= ∫_0 ^∞   ((cos(xt))/((t^2  +x^2 )^2 ))dt  f(x)=(1/2) ∫_(−∞) ^(+∞)     ((cos(xt))/((t^2  +x^2 )^2 ))dt ⇒  2f(x)= Re(  ∫_(−∞) ^(+∞)   (e^(ixt) /((t^2  +x^2 )^2 ))dt) let introduce  the complex function ϕ(z) = (e^(ixz) /((z^2  +x^2 )^2 ))  the poles of ϕ are ix ,−ix(doubles)  case 1  x>0  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,ix)  Res(ϕ,ix) = lim_(z→ix)  (1/((2−1)!))( (z−ix)^2 ϕ(z))^′   =lim_(z→ix) (  (e^(ixz) /((z+ix)^2 )))^′   =lim_(z→ix) (   ((ix e^(ixz) ( z+ix)^2   −2(z+ix)e^(ixz) )/((z+ix)^4 )))  =lim_(z→ix)    ((ixe^(ixz) (z+ix) −2 e^(ixz) )/((z+ix)^3 ))  =(( ix e^(−x^2 ) (2ix) −2 e^(−x^2 ) )/((2ix)^3 )) =((−2x^2  e^(−x^2 ) −2e^(−x^2 ) )/(−8i x^3 ))   = (((x^2  +1)e^(−x^2 ) )/(4ix^3 )) ⇒2f(x)=2iπ (((x^2 +1)e^(−x^2 ) )/(4ix^3 ))  ⇒ f(x)=((iπ)/4)( 1+x^2 )e^(−x^2 )  .
letputf(x)=0cos(xt)(t2+x2)2dtf(x)=12+cos(xt)(t2+x2)2dt2f(x)=Re(+eixt(t2+x2)2dt)letintroducethecomplexfunctionφ(z)=eixz(z2+x2)2thepolesofφareix,ix(doubles)case1x>0+φ(z)dz=2iπRes(φ,ix)Res(φ,ix)=limzix1(21)!((zix)2φ(z))=limzix(eixz(z+ix)2)=limzix(ixeixz(z+ix)22(z+ix)eixz(z+ix)4)=limzixixeixz(z+ix)2eixz(z+ix)3=ixex2(2ix)2ex2(2ix)3=2x2ex22ex28ix3=(x2+1)ex24ix32f(x)=2iπ(x2+1)ex24ix3f(x)=iπ4(1+x2)ex2.
Commented by prof Abdo imad last updated on 23/Apr/18
error in the final line f(x) = (π/(4x^3 ))( 1+x^2 ) e^(−x^2 ) .
errorinthefinallinef(x)=π4x3(1+x2)ex2.
Commented by caravan msup abdo. last updated on 24/Apr/18
case2  x<0  ∫_(−∞) ^(+∞) ϕ(z)dz=2iπ Res(ϕ,−ix)  Res(ϕ,−ix)=lim_(z→−ix)   (1/((2−1)!))((z+ix)^2 ϕ(z))^′   =lim_(x→−ix) ( (e^(ixz) /((z−ix)^2 )))^′   =lim_(z→−ix) (((ix e^(ixz) (z−ix)^2   −2(z−ix)e^(ixz) )/((z−ix)^4 )))  =lim_(z→−ix)   ((ix e^(ixz) (z−ix) −2 e^(ixz) )/((z−ix)^3 ))  = ((ix e^x^2  (−2ix) −2 e^x^2  )/((−2ix)^3 ))  =((2x^2  e^x^2  −2 e^x^2  )/(8ix^3 ))=(((x^2 −1)e^x^2  )/(4ix^3 ))  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ.(((x^2 −1)e^x^2  )/(4ix^3 ))  =(π/(2x^3 ))(x^2 −1) e^x^2    ⇒ f(x)=(π/(4x^3 ))(x^2 −1)e^x^2  .
case2x<0+φ(z)dz=2iπRes(φ,ix)Res(φ,ix)=limzix1(21)!((z+ix)2φ(z))=limxix(eixz(zix)2)=limzix(ixeixz(zix)22(zix)eixz(zix)4)=limzixixeixz(zix)2eixz(zix)3=ixex2(2ix)2ex2(2ix)3=2x2ex22ex28ix3=(x21)ex24ix3+φ(z)dz=2iπ.(x21)ex24ix3=π2x3(x21)ex2f(x)=π4x3(x21)ex2.
Answered by sma3l2996 last updated on 23/Apr/18
∫_0 ^∞ ((cos(xt))/((t^2 +x^2 )^2 ))dt=(1/2)∫_(−∞) ^∞ ((cos(xt))/((t^2 +x^2 )^2 ))dt=(1/2)∫_(∣z∣→∞) Re((e^(ixt) /((t^2 +x^2 )^2 )))dt  let  f(t)=(e^(ixt) /((t^2 +x^2 )^2 ))=(e^(ixt) /((t+ix)^2 (t−ix)^2 ))  if x>0  so  ∫_0 ^∞ f(t)dt=iπRes(f ; ix)   Re(f ; ix)=lim_(t→ix) (d/dt)((e^(ixt) /((t+ix)^2 )))=lim_(t→ix) ((e^(ixt) (ixt−x^2 −2))/((t+ix)^3 ))  =((e^(−x^2 ) (x^2 +1))/(4ix^3 ))  So  ∫_0 ^(+∞) ((cos(xt))/((t^2 +x^2 )^2 ))dt=((πe^(−x^2 ) (x^2 +1))/(4x^3 ))
0cos(xt)(t2+x2)2dt=12cos(xt)(t2+x2)2dt=12z∣→Re(eixt(t2+x2)2)dtletf(t)=eixt(t2+x2)2=eixt(t+ix)2(tix)2ifx>0so0f(t)dt=iπRes(f;ix)Re(f;ix)=limtixddt(eixt(t+ix)2)=limtixeixt(ixtx22)(t+ix)3=ex2(x2+1)4ix3So0+cos(xt)(t2+x2)2dt=πex2(x2+1)4x3

Leave a Reply

Your email address will not be published. Required fields are marked *