Menu Close

find-the-value-of-0-dx-1-x-2-1-x-4-




Question Number 33128 by prof Abdo imad last updated on 10/Apr/18
find the value of  ∫_0 ^∞        (dx/((1+x^2 )( 1+x^4 ))) .
findthevalueof0dx(1+x2)(1+x4).
Commented by prof Abdo imad last updated on 13/Apr/18
let put I  = ∫_0 ^∞      (dx/((1+x^2 )(1+x^4 )))  we have  2I = ∫_(−∞) ^(+∞)      (dx/((1+x^2 )(1+x^4 ))) .let introduce the  complex function ϕ(z) = (1/((1+z^2 )(1+z^4 )))  ϕ(z) =  (1/((z−i)(z+i)(z^2  −i)(z^2  −(−i))))  =  (1/((z−i)(z+i)(z −(√i))(z+(√i))(z −(√(−i)))(z +(√(−i)))))  (√i) =e^(i(π/4))     (√(−i)) =e^(−i(π/4))   so the poles of?ϕ are   i,−i,e^(i(π/4))  , −e^(i(π/4))  , e^(−i(π/4))  , −e^(−i(π/4))   ∫_(−∞) ^(+∞)  ϕ(z)dz = 2iπ(  Res(ϕ,i) +Res(ϕ,e^(i(π/4)) ) +Res(ϕ,−e^(−i(π/4)) )  let p(z) =(1+z^2 )(1+z^4 )  p(z)=1+z^4   +z^2  +z^6  ⇒p^′ (z) = 2z  +4z^3  +6z^5   Res(ϕ,i) =(1/(p^′ (i))) =  (1/(2i +4i^3  +6i^5 )) = (1/(2i−4i +6i))  = (1/(4i))  Res(ϕ, e^(i(π/4)) )  =  (1/(p^′ ( e^(i(π/4)) ))) =  (1/(2 e^(i(π/4))   +4 e^(i((3π)/4))   +6 e^(i((5π)/4)) ))  but  2 e^(i(π/4))   +4  e^(i((3π)/4))   +6 e^(i((5π)/4))   = 2 e^(i(π/4))   −4 e^(−i(π/4))  −6 e^(i(π/4))  = −4( e^(i(π/4))  +e^(−i(π/4)) )  =−4 . 2.((√2)/2) =−4(√2)  Res(ϕ,−e^(−i(π/4)) )  = (1/(p^′ ( −e^(−i(π/4)) )))  =   (1/(−2 e^(−i(π/4))  −4 e^(−i((3π)/4))    −6 e^(−i((5π)/4)) ))  =  ((−1)/(2 e^(−i(π/4))   +4 e^(−i((3π)/4))   +6 e^(−i((5π)/4)) )) = ((−1)/(2 e^(−i(π/4))   −4 e^(i(π/4))  −6 e^(−i(π/4)) ))  =  ((−1)/(−4( e^(i(π/4))   +e^(−i(π/4)) ))) =  (1/(4 .2.((√2)/2))) = (1/(4(√2))) ⇒  2I  =2iπ(  (1/(4i))  −(1/(4(√2)))  + (1/(4(√2))) ) = (π/2)  ⇒  I = (π/4) .
letputI=0dx(1+x2)(1+x4)wehave2I=+dx(1+x2)(1+x4).letintroducethecomplexfunctionφ(z)=1(1+z2)(1+z4)φ(z)=1(zi)(z+i)(z2i)(z2(i))=1(zi)(z+i)(zi)(z+i)(zi)(z+i)i=eiπ4i=eiπ4sothepolesof?φarei,i,eiπ4,eiπ4,eiπ4,eiπ4+φ(z)dz=2iπ(Res(φ,i)+Res(φ,eiπ4)+Res(φ,eiπ4)letp(z)=(1+z2)(1+z4)p(z)=1+z4+z2+z6p(z)=2z+4z3+6z5Res(φ,i)=1p(i)=12i+4i3+6i5=12i4i+6i=14iRes(φ,eiπ4)=1p(eiπ4)=12eiπ4+4ei3π4+6ei5π4but2eiπ4+4ei3π4+6ei5π4=2eiπ44eiπ46eiπ4=4(eiπ4+eiπ4)=4.2.22=42Res(φ,eiπ4)=1p(eiπ4)=12eiπ44ei3π46ei5π4=12eiπ4+4ei3π4+6ei5π4=12eiπ44eiπ46eiπ4=14(eiπ4+eiπ4)=14.2.22=1422I=2iπ(14i142+142)=π2I=π4.
Commented by prof Abdo imad last updated on 13/Apr/18
another method  the ch.x =(1/t) give   I = −∫_0 ^∞      (1/((1+(1/t^2 ))(1+(1/t^4 )))) ((−dt)/t^2 )  = ∫_0 ^∞      (( t^4 dt)/((1+t^2 )(1+t^4 ))) =∫_0 ^∞   ((1+t^4  −1)/((1+t^2 )(1+t^4 )))dt  = ∫_0 ^∞    (dt/(1+t^2 ))  −∫_0 ^∞     (dt/((1+t^2 )(1+t^4 ))) =(π/2) −I⇒  2I =(π/2) ⇒ I = (π/4)  ★ I=(π/4) ★
anothermethodthech.x=1tgiveI=01(1+1t2)(1+1t4)dtt2=0t4dt(1+t2)(1+t4)=01+t41(1+t2)(1+t4)dt=0dt1+t20dt(1+t2)(1+t4)=π2I2I=π2I=π4I=π4

Leave a Reply

Your email address will not be published. Required fields are marked *