find-the-value-of-0-dx-1-x-2-1-x-4- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 33128 by prof Abdo imad last updated on 10/Apr/18 findthevalueof∫0∞dx(1+x2)(1+x4). Commented by prof Abdo imad last updated on 13/Apr/18 letputI=∫0∞dx(1+x2)(1+x4)wehave2I=∫−∞+∞dx(1+x2)(1+x4).letintroducethecomplexfunctionφ(z)=1(1+z2)(1+z4)φ(z)=1(z−i)(z+i)(z2−i)(z2−(−i))=1(z−i)(z+i)(z−i)(z+i)(z−−i)(z+−i)i=eiπ4−i=e−iπ4sothepolesof?φarei,−i,eiπ4,−eiπ4,e−iπ4,−e−iπ4∫−∞+∞φ(z)dz=2iπ(Res(φ,i)+Res(φ,eiπ4)+Res(φ,−e−iπ4)letp(z)=(1+z2)(1+z4)p(z)=1+z4+z2+z6⇒p′(z)=2z+4z3+6z5Res(φ,i)=1p′(i)=12i+4i3+6i5=12i−4i+6i=14iRes(φ,eiπ4)=1p′(eiπ4)=12eiπ4+4ei3π4+6ei5π4but2eiπ4+4ei3π4+6ei5π4=2eiπ4−4e−iπ4−6eiπ4=−4(eiπ4+e−iπ4)=−4.2.22=−42Res(φ,−e−iπ4)=1p′(−e−iπ4)=1−2e−iπ4−4e−i3π4−6e−i5π4=−12e−iπ4+4e−i3π4+6e−i5π4=−12e−iπ4−4eiπ4−6e−iπ4=−1−4(eiπ4+e−iπ4)=14.2.22=142⇒2I=2iπ(14i−142+142)=π2⇒I=π4. Commented by prof Abdo imad last updated on 13/Apr/18 anothermethodthech.x=1tgiveI=−∫0∞1(1+1t2)(1+1t4)−dtt2=∫0∞t4dt(1+t2)(1+t4)=∫0∞1+t4−1(1+t2)(1+t4)dt=∫0∞dt1+t2−∫0∞dt(1+t2)(1+t4)=π2−I⇒2I=π2⇒I=π4★I=π4★ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Evalute-the-sum-k-1-n-k-pi-n-2-arctan-kpi-n-2-Next Next post: 1-find-the-value-of-u-n-cos-nx-4-x-2-dx-2-find-the-nature-of-u-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.