Menu Close

find-the-value-of-0-dx-1-x-2-a-2-x-2-2-find-the-value-of-A-0-dx-1-x-2-x-2-1-sin-2-0-lt-lt-pi-2-




Question Number 33341 by prof Abdo imad last updated on 14/Apr/18
find the value of  ∫_0 ^∞     (dx/((1+x^2 )(a^2  +x^2 )))  2) find the value of  A(θ) = ∫_0 ^∞     (dx/((1+x^2 )( x^2  +1 −sin^2 θ)))  0<θ<(π/2) .
findthevalueof0dx(1+x2)(a2+x2)2)findthevalueofA(θ)=0dx(1+x2)(x2+1sin2θ)0<θ<π2.
Commented by prof Abdo imad last updated on 18/Apr/18
1) let put  f(a) = ∫_0 ^∞     (dx/((1+x^2 )(a^2  +x^2 )))  2f(a) = ∫_(−∞) ^(+∞)     (dx/((1+x^2 )(a^2  +x^2 )))  let vonsider  the complex function ϕ(z)=  (1/((z^2 +1)(z^(2 )  +a^2 )))  the poles of  ϕ is i,−i,ia ,−ia  case 1   a>0   ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ( Res(ϕ,i) +Res(ϕ,ia)) but  ϕ(z) =  (1/((z−i)(z+i)(z−ia)(z+ia))) ⇒  Res(ϕ,i) =  (1/((2i)(a^2  −1)))  Res(ϕ,ia) =   (1/((2ia)(1−a^2 ))) ⇒  ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ(    (1/((−2i)(1−a^2 ))) +(1/((2ia)(1−a^2 ))))  = ((2π)/(1−a^2 ))(  (1/(2a)) −(1/2)) = (π/(1−a^2 ))( (1/a) −1)  = (π/(1−a^2 )) ((1−a)/a) = (π/(a(1+a)))   ⇒ I =  (π/(2a(1+a)))  case2  a <0   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ( Res(ϕ,i) +Res(ϕ,−ia))  Res(ϕ,−ia) =   (1/((−2ia)(1−a^2 ))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ(  ((−1)/(2i(1−a^2 ))) −(1/(2ia( 1−a^2 ))))  = ((−π)/(1−a^2 ))(  1+ (1/a)) = ((−π(1+a))/(a(1−a^2 ))) =  ((−π)/(a(1−a)))  =  (π/(a(a−1))) ⇒ I  =  (π/(2a(a−1)))   and we must  study the special case  a =+^−  1 .
1)letputf(a)=0dx(1+x2)(a2+x2)2f(a)=+dx(1+x2)(a2+x2)letvonsiderthecomplexfunctionφ(z)=1(z2+1)(z2+a2)thepolesofφisi,i,ia,iacase1a>0+φ(z)dz=2iπ(Res(φ,i)+Res(φ,ia))butφ(z)=1(zi)(z+i)(zia)(z+ia)Res(φ,i)=1(2i)(a21)Res(φ,ia)=1(2ia)(1a2)+φ(z)dz=2iπ(1(2i)(1a2)+1(2ia)(1a2))=2π1a2(12a12)=π1a2(1a1)=π1a21aa=πa(1+a)I=π2a(1+a)case2a<0+φ(z)dz=2iπ(Res(φ,i)+Res(φ,ia))Res(φ,ia)=1(2ia)(1a2)+φ(z)dz=2iπ(12i(1a2)12ia(1a2))=π1a2(1+1a)=π(1+a)a(1a2)=πa(1a)=πa(a1)I=π2a(a1)andwemuststudythespecialcasea=+1.
Commented by prof Abdo imad last updated on 18/Apr/18
2) we have  A(θ) = ∫_0 ^∞      (dx/((1+x^2 )( x^2  +cos^2 θ)))  =f (cosθ) =  (π/(2 cosθ(1+cosθ))) .
2)wehaveA(θ)=0dx(1+x2)(x2+cos2θ)=f(cosθ)=π2cosθ(1+cosθ).

Leave a Reply

Your email address will not be published. Required fields are marked *