find-the-value-of-0-dx-1-x-2-a-2-x-2-2-find-the-value-of-A-0-dx-1-x-2-x-2-1-sin-2-0-lt-lt-pi-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 33341 by prof Abdo imad last updated on 14/Apr/18 findthevalueof∫0∞dx(1+x2)(a2+x2)2)findthevalueofA(θ)=∫0∞dx(1+x2)(x2+1−sin2θ)0<θ<π2. Commented by prof Abdo imad last updated on 18/Apr/18 1)letputf(a)=∫0∞dx(1+x2)(a2+x2)2f(a)=∫−∞+∞dx(1+x2)(a2+x2)letvonsiderthecomplexfunctionφ(z)=1(z2+1)(z2+a2)thepolesofφisi,−i,ia,−iacase1a>0∫−∞+∞φ(z)dz=2iπ(Res(φ,i)+Res(φ,ia))butφ(z)=1(z−i)(z+i)(z−ia)(z+ia)⇒Res(φ,i)=1(2i)(a2−1)Res(φ,ia)=1(2ia)(1−a2)⇒∫−∞+∞φ(z)dz=2iπ(1(−2i)(1−a2)+1(2ia)(1−a2))=2π1−a2(12a−12)=π1−a2(1a−1)=π1−a21−aa=πa(1+a)⇒I=π2a(1+a)case2a<0∫−∞+∞φ(z)dz=2iπ(Res(φ,i)+Res(φ,−ia))Res(φ,−ia)=1(−2ia)(1−a2)⇒∫−∞+∞φ(z)dz=2iπ(−12i(1−a2)−12ia(1−a2))=−π1−a2(1+1a)=−π(1+a)a(1−a2)=−πa(1−a)=πa(a−1)⇒I=π2a(a−1)andwemuststudythespecialcasea=+−1. Commented by prof Abdo imad last updated on 18/Apr/18 2)wehaveA(θ)=∫0∞dx(1+x2)(x2+cos2θ)=f(cosθ)=π2cosθ(1+cosθ). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-a-equivalent-of-A-n-0-n-1-1-x-n-n-dx-n-Next Next post: prove-that-1-lim-n-0-n-1-x-n-n-e-x-dx-1-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.