Question Number 43934 by abdo.msup.com last updated on 18/Sep/18
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{+\infty} \:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} \:+{x}^{\mathrm{8}} } \\ $$
Commented by maxmathsup by imad last updated on 19/Sep/18
$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} \:+{x}^{\mathrm{8}} }\:\:{we}\:{have}\:\mathrm{2}{I}\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} \:+{x}^{\mathrm{8}} }\:\:{let} \\ $$$$\varphi\left({z}\right)\:=\frac{\mathrm{1}}{{z}^{\mathrm{8}} \:+{z}^{\mathrm{4}} +\mathrm{1}}\:\:.{poles}\:{of}\:\varphi?\:{z}^{\mathrm{4}} ={t}\:\Rightarrow{t}^{\mathrm{2}} +{t}\:+\mathrm{1}=\mathrm{0}\:\Rightarrow{t}={j}\:{or}\:{t}=\overset{−} {{j}}\:\Rightarrow \\ $$$${z}^{\mathrm{4}} ={j}\:\Rightarrow{z}^{\mathrm{4}} ={e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \:\Rightarrow\varphi\left({z}\right)=\:\frac{\mathrm{1}}{\left({z}^{\mathrm{4}} −{j}\right)\left({z}^{\mathrm{4}} \:+{j}\right)}\:=\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} −\sqrt{{j}}\right)\left({z}^{\mathrm{2}} +\sqrt{\left.{j}\right)}\left({z}^{\mathrm{2}} −\sqrt{−{j}}\right)\left({z}^{\mathrm{2}} \:+\sqrt{−{j}}\right)\right.} \\ $$$$=\:\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} \:−{e}^{\frac{{i}\pi}{\mathrm{3}}} \right)\left({z}^{\mathrm{2}} \:+{e}^{\frac{{i}\pi}{\mathrm{3}}} \right)\left({z}^{\mathrm{2}} \:−{e}^{−\frac{{i}\pi}{\mathrm{3}}} \right)\left({z}^{\mathrm{2}} \:+{e}^{−\frac{{i}\pi}{\mathrm{3}}} \right)} \\ $$$$=\:\frac{\mathrm{1}}{\left({z}−{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)\left({z}+{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)\left({z}−{ie}^{\frac{{i}\pi}{\mathrm{6}}} \right)\left({z}+{i}\:{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)\left({z}\:−{e}^{−\frac{{i}\pi}{\mathrm{6}}} \right)\left({z}+{e}^{−\frac{{i}\pi}{\mathrm{6}}} \right)\left({z}−{ie}^{−\frac{{i}\pi}{\mathrm{6}}} \right)\left({z}+{i}\:{e}^{−\frac{{i}\pi}{\mathrm{6}}} \right)} \\ $$$${the}\:{poles}\:{of}\:\varphi\:{are}\:\overset{−} {+}{e}^{\frac{{i}\pi}{\mathrm{6}}} ,\overset{−} {+}{i}\:{e}^{\frac{{i}\pi}{\mathrm{6}}} \:,\overset{−} {+}{e}^{−\frac{{i}\pi}{\mathrm{6}}} \:,\overset{−} {+}{i}\:{e}^{−\frac{{i}\pi}{\mathrm{6}}} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\left\{{Res}\left(\varphi,{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)\:+{Res}\left(\varphi,{i}\:{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)\:+{Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{6}}} \right)\:+{Res}\left(\varphi,−{ie}^{−\frac{{i}\pi}{\mathrm{6}}} \right)\right\} \\ $$$${we}\:{have}\:{f}\left({x}\right)=\frac{\mathrm{1}}{{p}\left({x}\right)}\:\Rightarrow\:{Res}\left(\varphi\:,{z}_{{i}} \right)=\frac{\mathrm{1}}{{p}^{'} \left({z}_{{i}} \right)}\:\Rightarrow \\ $$$${Res}\left(\varphi,{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)=\:\frac{\mathrm{1}}{\mathrm{8}\:\left({e}^{\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{7}} \:+\mathrm{4}\left({e}^{\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{8}\:{e}^{{i}\frac{\mathrm{7}\pi}{\mathrm{6}}} \:+\:\mathrm{4}{i}}\:=\frac{\mathrm{1}}{−\mathrm{8}\:{e}^{\frac{{i}\pi}{\mathrm{6}}} \:+\mathrm{4}{i}} \\ $$$${Res}\left(\varphi,{i}\:{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)\:=\:\frac{\mathrm{1}}{\mathrm{8}\:\left({i}\:{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{7}} \:+\mathrm{4}\left({i}\:{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{−\mathrm{8}{i}\:\left(−{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)−\mathrm{4}{i}\left({i}\right)}\:=\frac{\mathrm{1}}{\mathrm{8}{i}\:{e}^{\frac{{i}\pi}{\mathrm{6}}} \:+\mathrm{4}} \\ $$$${Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{6}}} \right)\:=\:\frac{\mathrm{1}}{\mathrm{8}\left(−{e}^{−\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{7}} \:+\mathrm{4}\left(−{e}^{−\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{−\mathrm{8}\left(−\mathrm{1}\right)\:{e}^{−\frac{{i}\pi}{\mathrm{6}}} \:−\mathrm{4}\left(−{i}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}\:{e}^{−\frac{{i}\pi}{\mathrm{6}}} \:+\mathrm{4}{i}} \\ $$$${Res}\left(\varphi,−{i}\:{e}^{−{i}\frac{\pi}{\mathrm{6}}} \right)\:=\:\frac{\mathrm{1}}{\mathrm{8}\left(−{i}\:{e}^{−\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{7}} \:+\mathrm{4}\:\left(−{i}\:{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)^{\mathrm{3}} }\:…{be}\:{continued}… \\ $$