Menu Close

find-the-value-of-0-dx-2x-2-1-2-




Question Number 35440 by prof Abdo imad last updated on 19/May/18
find the value of  ∫_0 ^∞      (dx/((2x^2   +1)^2 ))
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left(\mathrm{2}{x}^{\mathrm{2}} \:\:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Commented by prof Abdo imad last updated on 19/May/18
let put I  = ∫_0 ^∞       (dx/((2x^2 +1)^2 ))  2I  = ∫_(−∞) ^(+∞)    (dx/((2x^2 +1)^2 ))  =(1/4) ∫_(−∞) ^(+∞)     (dx/((x^2  +(1/2))^2 ))  let condider tbe complex function  ϕ(z) =  (1/((z^2  +(1/2))^2 ))  we have  ϕ(z) =  (1/((z−(i/( (√2))))^2 (z +(i/( (√2))))^2 )) so the?polrs of ϕ are  (i/( (√2))) and ((−i)/( (√2))) (doubles) and Residus theorem give  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ,(i/( (√2))))  Res(ϕ,(i/( (√2)))) =lim_(z→(i/( (√2))))   { (z−(i/( (√2))))^2 ϕ(z)}^′   =lim_(z→(i/( (√2))))    { (z+(i/( (√2))))^(−2) }^′   =lim_(z→(i/( (√2))))    −2(z +(i/( (√2))))^(−3)   =−2 (((2i)/( (√2))))^(−3)  =−2((√2) i)^(−3) =2 ((√2))^(−3) .(1/i)  = (1/(i(√2))) ⇒ ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ  (1/(i(√2))) = π(√2)  2I  =(1/4) π(√2)  ⇒ I = ((π(√2))/8) = ((2π)/(8(√2))) ⇒   I =  (π/(4(√2)))  .
$${let}\:{put}\:{I}\:\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{2}{I}\:\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:\:=\frac{\mathrm{1}}{\mathrm{4}}\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$${let}\:{condider}\:{tbe}\:{complex}\:{function} \\ $$$$\varphi\left({z}\right)\:=\:\:\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }\:\:{we}\:{have} \\ $$$$\varphi\left({z}\right)\:=\:\:\frac{\mathrm{1}}{\left({z}−\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} \left({z}\:+\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} }\:{so}\:{the}?{polrs}\:{of}\:\varphi\:{are} \\ $$$$\frac{{i}}{\:\sqrt{\mathrm{2}}}\:{and}\:\frac{−{i}}{\:\sqrt{\mathrm{2}}}\:\left({doubles}\right)\:{and}\:{Residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,\frac{{i}}{\:\sqrt{\mathrm{2}}}\right) \\ $$$${Res}\left(\varphi,\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)\:={lim}_{{z}\rightarrow\frac{{i}}{\:\sqrt{\mathrm{2}}}} \:\:\left\{\:\left({z}−\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} \varphi\left({z}\right)\right\}^{'} \\ $$$$={lim}_{{z}\rightarrow\frac{{i}}{\:\sqrt{\mathrm{2}}}} \:\:\:\left\{\:\left({z}+\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)^{−\mathrm{2}} \right\}^{'} \\ $$$$={lim}_{{z}\rightarrow\frac{{i}}{\:\sqrt{\mathrm{2}}}} \:\:\:−\mathrm{2}\left({z}\:+\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)^{−\mathrm{3}} \\ $$$$=−\mathrm{2}\:\left(\frac{\mathrm{2}{i}}{\:\sqrt{\mathrm{2}}}\right)^{−\mathrm{3}} \:=−\mathrm{2}\left(\sqrt{\mathrm{2}}\:{i}\right)^{−\mathrm{3}} =\mathrm{2}\:\left(\sqrt{\mathrm{2}}\right)^{−\mathrm{3}} .\frac{\mathrm{1}}{{i}} \\ $$$$=\:\frac{\mathrm{1}}{{i}\sqrt{\mathrm{2}}}\:\Rightarrow\:\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\:\frac{\mathrm{1}}{{i}\sqrt{\mathrm{2}}}\:=\:\pi\sqrt{\mathrm{2}} \\ $$$$\mathrm{2}{I}\:\:=\frac{\mathrm{1}}{\mathrm{4}}\:\pi\sqrt{\mathrm{2}}\:\:\Rightarrow\:{I}\:=\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}\:=\:\frac{\mathrm{2}\pi}{\mathrm{8}\sqrt{\mathrm{2}}}\:\Rightarrow\: \\ $$$${I}\:=\:\:\frac{\pi}{\mathrm{4}\sqrt{\mathrm{2}}}\:\:. \\ $$
Commented by prof Abdo imad last updated on 19/May/18
I = ∫_0 ^∞         (dx/((2x^2  +1)^2 ))  let use the changement  x=(1/( (√2))) tant ⇒ I  = (1/( (√2)))∫_0 ^(π/2)  ((1+tan^2 t)/((1+tan^2 )^2 ))dt  = (1/( (√2))) ∫_0 ^(π/2)     (dt/(1+tan^2 t)) = (1/( (√2))) ∫_0 ^(π/2)   cos^2 t dt  =(1/( (√2))) ∫_0 ^(π/2)   (((1+cos(2t))/2))dt  = (1/(2(√2)))  (π/2)  + (1/(4(√2)))[ sin(2t)]_0 ^(π/2)   ★   I = (π/(4(√2))) ★
$${I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:\:{let}\:{use}\:{the}\:{changement} \\ $$$${x}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:{tant}\:\Rightarrow\:{I}\:\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}+{tan}^{\mathrm{2}} {t}}{\left(\mathrm{1}+{tan}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{tan}^{\mathrm{2}} {t}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{cos}^{\mathrm{2}} {t}\:{dt} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\left(\frac{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)}{\mathrm{2}}\right){dt} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\:\frac{\pi}{\mathrm{2}}\:\:+\:\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\left[\:{sin}\left(\mathrm{2}{t}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$\bigstar\:\:\:{I}\:=\:\frac{\pi}{\mathrm{4}\sqrt{\mathrm{2}}}\:\bigstar \\ $$
Answered by ajfour last updated on 19/May/18
I=∫_0 ^(  ∞) (dx/((2x^2 +1)^2 ))  let  x=(1/( (√2)))tan θ  ⇒  dx=(1/( (√2)))sec^2 θdθ  ⇒ I=(1/( (√2)))∫cos^2 θdθ  I=(1/(2(√2))) ∫_0 ^(  π/2) (1+cos 2θ)dθ      =(1/(2(√2))) (θ+((sin 2θ)/2))∣_0 ^(π/2)   = (π/(4(√2)))  .
$${I}=\int_{\mathrm{0}} ^{\:\:\infty} \frac{{dx}}{\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${let}\:\:{x}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{tan}\:\theta\:\:\Rightarrow\:\:{dx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{sec}\:^{\mathrm{2}} \theta{d}\theta \\ $$$$\Rightarrow\:{I}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\mathrm{cos}\:^{\mathrm{2}} \theta{d}\theta \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\:\:\pi/\mathrm{2}} \left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta\right){d}\theta \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\left(\theta+\frac{\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{2}}\right)\mid_{\mathrm{0}} ^{\pi/\mathrm{2}} \:\:=\:\frac{\pi}{\mathrm{4}\sqrt{\mathrm{2}}}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *