Menu Close

find-the-value-of-0-dx-x-1-x-2-x-3-




Question Number 26759 by abdo imad last updated on 29/Dec/17
find  the value of   ∫_0 ^( ∝)   (dx/((x+1)(x+2)(x+3))) .
findthevalueof0dx(x+1)(x+2)(x+3).
Commented by abdo imad last updated on 30/Dec/17
we use the changement x+2=t  I= ∫_0 ^∝   (dx/((x+1)(x+2)(x+3)))= ∫_2 ^(∝ )   (dt/((t−1)t(t+1))) and after decomposition  I = ∫_2 ^∝ (  (1/(2(t−1))) − (1/t) + (1/(2(t+1))))dt  = (1/2) ∫_2 ^∝ ( (1/(t−1)) + (1/(t+1)) )dt − ∫_2 ^∝  (dt/t)  = (1/2) ∫_2 ^∝  ((2t)/(t^2 −1))dt − ∫_2 ^∝ (dt/t)=[ (1/2)ln/t^2 −1/ −ln/t/ ]_2 ^∝   =[ ln(((√(/t^2 −1/))/(/t/)) ]_2 ^∝ = [ln(((√(t^2 −1))/t))]_2 ^∝ =−ln(((√3)/2))  I= ln(2) −(1/2) ln(3).
weusethechangementx+2=tI=0dx(x+1)(x+2)(x+3)=2dt(t1)t(t+1)andafterdecompositionI=2(12(t1)1t+12(t+1))dt=122(1t1+1t+1)dt2dtt=1222tt21dt2dtt=[12ln/t21/ln/t/]2=[ln(/t21//t/]2=[ln(t21t)]2=ln(32)I=ln(2)12ln(3).
Answered by ajfour last updated on 29/Dec/17
(1/((x+1)(x+2)(x+3)))=(1/(t(t^2 −1)))  if x+2=t  let t=sec^2 θ   ⇒  dt=2sec^2 θtan θ  ∫_2 ^(  α+2) (dt/(t(t^2 −1)))=2∫_θ_1  ^( θ_2 ) cot θdθ  =2ln ∣((sin θ_2 )/(sin θ_1 ))∣=ln (((1−(1/(α+2)))/(1−(1/2))))  =ln (2−(2/(α+2))) .
1(x+1)(x+2)(x+3)=1t(t21)ifx+2=tlett=sec2θdt=2sec2θtanθ2α+2dtt(t21)=2θ1θ2cotθdθ=2lnsinθ2sinθ1∣=ln(11α+2112)=ln(22α+2).

Leave a Reply

Your email address will not be published. Required fields are marked *