Menu Close

find-the-value-of-0-e-2x-2-3-x-2-2-dx-




Question Number 27802 by abdo imad last updated on 15/Jan/18
find the value of  ∫_0 ^∞   (e^(−2x^2 ) /((3+x^2 )^2 ))dx .
findthevalueof0e2x2(3+x2)2dx.
Commented by abdo imad last updated on 17/Jan/18
let put  I= ∫_0 ^∞   (e^(−2x^2 ) /((3+x^2 )^2 ))dx  I= (1/2) ∫_(−∝) ^(+∝)    (e^(−2x^2 ) /((3+x^2 )^2 )) dx  let introduce the complex function  f(z)=  (e^(−2z^2 ) /((3+z^2 )^2 ))  .poles of f  ?  f(z)=     (e^(−2z^2 ) /((z −i(√3))^2  (z+i(√3))^2 ))  so f have a double poles i(√3)  and −i(√3)  ∫_(−∝) ^(+∝) f(z)dz =2iπ Res (f,i(√3))  Res(f,i(√(3)))= lim_(z→i(√3) )    (1/((2−1)!)) ((z−i(√3))^2 f(z))^′   lim_(z→i(√3))  ( e^(−2z^2 ) .(z+i(√3))^(−2) )^,   =lim_(z→i(√3))  (  −4z e^(−z^2 ) (z+i(√3))^(−2)  −2 e^(−2z^2 ) (z+i(√3))^(−3) )  = −4(i(√3)) e^3  (2i(√3))^(−2)   −2 e^6  (2i(√3))^(−3)   =  ((−4i(√3) e^3 )/(−12))  − ((2 e^6 )/(−24i(√3)))= ((i(√3) e^3 )/3)  + (e^6 /(12i(√3))).  ∫_(−∝) ^(+∝) f(z)dz =2iπ(  ((i(√3) e^3 )/3)  +  (e^6 /(12i(√3))) )  =  ((−2(√3) e^3 )/3)  +   (e^6 /(6(√3)))  finally  I= (1/2) ∫_R f(z)dz= ((−e^3 (√3))/3)  +  (e^6 /(12(√3)))  .
letputI=0e2x2(3+x2)2dxI=12+e2x2(3+x2)2dxletintroducethecomplexfunctionf(z)=e2z2(3+z2)2.polesoff?f(z)=e2z2(zi3)2(z+i3)2sofhaveadoublepolesi3andi3+f(z)dz=2iπRes(f,i3)Res(f,i3)=limzi31(21)!((zi3)2f(z))limzi3(e2z2.(z+i3)2),=limzi3(4zez2(z+i3)22e2z2(z+i3)3)=4(i3)e3(2i3)22e6(2i3)3=4i3e3122e624i3=i3e33+e612i3.+f(z)dz=2iπ(i3e33+e612i3)=23e33+e663finallyI=12Rf(z)dz=e333+e6123.

Leave a Reply

Your email address will not be published. Required fields are marked *