Menu Close

find-the-value-of-0-e-px-sinx-dx-with-p-gt-0-




Question Number 26570 by abdo imad last updated on 26/Dec/17
find the value of ∫_0 ^∞ e^(−px) /sinx/dx   with p>0
findthevalueof0epx/sinx/dxwithp>0
Commented by abdo imad last updated on 02/Jan/18
let put I= ∫_0 ^∝  e^(−px) /sinx/dx  I= lim_(n−>∝)  ∫_0 ^(nπ)  e^(−px) /sinx/dx  but   ∫_0 ^(nπ) e^(−px) /sinx/dx= Σ_(k=0) ^(n−1)  ∫_(kπ) ^((k+1)π)  e^(−px) /sinx/dx  = Σ_(k=0) ^(n−1)  ∫_0 ^π   e^(−p(kπ+t)) /sin(kπ+t)/dt ( we do the changement x=kπ +t)  = Σ_(k=0) ^(n−1)  e^(−pkπ)   ∫_0 ^π  e^(−pt) sint dt = Σ_(k=0) ^(n−1)  (e^(−pπ) )^k  ∫_0 ^π  e^(−pt)  sintdt  = ((1−  e^(−npπ) )/(1− e^(−pπ) )) ∫_0 ^π  e^(−pt) sintdt   but   ∫_0 ^π  e^(−pt) sintdt = Im( ∫_0 ^π  e^((i−p)t) dt )          =Im(  [ (1/(i−p)) e^((i−p)t)  ]_0 ^(π ) = ((1+e^(−pπ) )/(1+p^2 ))  I= (1/(1−e^(−pπ) )) . ((1+ e^(−pπ) )/(1+p^2 )) = ((1+ e^(−pπ) )/((1+p^2 )(1−e^(−pπ) ))) .
letputI=0epx/sinx/dxI=limn>∝0nπepx/sinx/dxbut0nπepx/sinx/dx=k=0n1kπ(k+1)πepx/sinx/dx=k=0n10πep(kπ+t)/sin(kπ+t)/dt(wedothechangementx=kπ+t)=k=0n1epkπ0πeptsintdt=k=0n1(epπ)k0πeptsintdt=1enpπ1epπ0πeptsintdtbut0πeptsintdt=Im(0πe(ip)tdt)=Im([1ipe(ip)t]0π=1+epπ1+p2I=11epπ.1+epπ1+p2=1+epπ(1+p2)(1epπ).

Leave a Reply

Your email address will not be published. Required fields are marked *