Menu Close

find-the-value-of-0-e-tx-2-cosx-dx-with-t-gt-0-




Question Number 28694 by abdo imad last updated on 29/Jan/18
find the value of ∫_0 ^∞  e^(−tx^2 ) cosx dx  with t>0 .
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{tx}^{\mathrm{2}} } {cosx}\:{dx}\:\:{with}\:{t}>\mathrm{0}\:. \\ $$
Commented by abdo imad last updated on 29/Jan/18
let put  I= ∫_0 ^∞   e^(−tx^2 )  cosx dx  I= (1/2) ∫_(−∞) ^(+∞)   e^(−tx^2 +ix) dx because  ∫_(−∞) ^(+∞)  e^(−tx^2 ) sinxdx=0 but  ∫_(−∞) ^(+∞)   e^(−(((√t)x)^2  −2(√t)x(i/(2(√t)))  +((i/(2(√t))))^2  −((i/(2(√t))))^2 )) dx  = ∫_(− ∞) ^(+∞)   e^(−((√t)x −(i/(2(√t))))^2 −(1/(4t))) dx        (ch.(√t)x −(i/(2(√t)))=u)  = e^(−(1/(4t)))   ∫_(−∞) ^(+∞)    e^(−u^2 )   (du/( (√t)))=((√π)/( (√t))) e^(−(1/(4t)))     (  ∫_(−∞) ^(+∞)  e^(−u^2 ) du=(√π))so  I= ((√π)/(2(√t)))  e^(−(1/(4t)))  .
$${let}\:{put}\:\:{I}=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{tx}^{\mathrm{2}} } \:{cosx}\:{dx} \\ $$$${I}=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{tx}^{\mathrm{2}} +{ix}} {dx}\:{because}\:\:\int_{−\infty} ^{+\infty} \:{e}^{−{tx}^{\mathrm{2}} } {sinxdx}=\mathrm{0}\:{but} \\ $$$$\int_{−\infty} ^{+\infty} \:\:{e}^{−\left(\left(\sqrt{{t}}{x}\right)^{\mathrm{2}} \:−\mathrm{2}\sqrt{{t}}{x}\frac{{i}}{\mathrm{2}\sqrt{{t}}}\:\:+\left(\frac{{i}}{\mathrm{2}\sqrt{{t}}}\right)^{\mathrm{2}} \:−\left(\frac{{i}}{\mathrm{2}\sqrt{{t}}}\right)^{\mathrm{2}} \right)} {dx} \\ $$$$=\:\int_{−\:\infty} ^{+\infty} \:\:{e}^{−\left(\sqrt{{t}}{x}\:−\frac{{i}}{\mathrm{2}\sqrt{{t}}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}{t}}} {dx}\:\:\:\:\:\:\:\:\left({ch}.\sqrt{{t}}{x}\:−\frac{{i}}{\mathrm{2}\sqrt{{t}}}={u}\right) \\ $$$$=\:{e}^{−\frac{\mathrm{1}}{\mathrm{4}{t}}} \:\:\int_{−\infty} ^{+\infty} \:\:\:{e}^{−{u}^{\mathrm{2}} } \:\:\frac{{du}}{\:\sqrt{{t}}}=\frac{\sqrt{\pi}}{\:\sqrt{{t}}}\:{e}^{−\frac{\mathrm{1}}{\mathrm{4}{t}}} \:\:\:\:\left(\:\:\int_{−\infty} ^{+\infty} \:{e}^{−{u}^{\mathrm{2}} } {du}=\sqrt{\pi}\right){so} \\ $$$${I}=\:\frac{\sqrt{\pi}}{\mathrm{2}\sqrt{{t}}}\:\:{e}^{−\frac{\mathrm{1}}{\mathrm{4}{t}}} \:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *