Menu Close

find-the-value-of-0-e-tx-2-cosx-dx-with-t-gt-0-




Question Number 28694 by abdo imad last updated on 29/Jan/18
find the value of ∫_0 ^∞  e^(−tx^2 ) cosx dx  with t>0 .
findthevalueof0etx2cosxdxwitht>0.
Commented by abdo imad last updated on 29/Jan/18
let put  I= ∫_0 ^∞   e^(−tx^2 )  cosx dx  I= (1/2) ∫_(−∞) ^(+∞)   e^(−tx^2 +ix) dx because  ∫_(−∞) ^(+∞)  e^(−tx^2 ) sinxdx=0 but  ∫_(−∞) ^(+∞)   e^(−(((√t)x)^2  −2(√t)x(i/(2(√t)))  +((i/(2(√t))))^2  −((i/(2(√t))))^2 )) dx  = ∫_(− ∞) ^(+∞)   e^(−((√t)x −(i/(2(√t))))^2 −(1/(4t))) dx        (ch.(√t)x −(i/(2(√t)))=u)  = e^(−(1/(4t)))   ∫_(−∞) ^(+∞)    e^(−u^2 )   (du/( (√t)))=((√π)/( (√t))) e^(−(1/(4t)))     (  ∫_(−∞) ^(+∞)  e^(−u^2 ) du=(√π))so  I= ((√π)/(2(√t)))  e^(−(1/(4t)))  .
letputI=0etx2cosxdxI=12+etx2+ixdxbecause+etx2sinxdx=0but+e((tx)22txi2t+(i2t)2(i2t)2)dx=+e(txi2t)214tdx(ch.txi2t=u)=e14t+eu2dut=πte14t(+eu2du=π)soI=π2te14t.

Leave a Reply

Your email address will not be published. Required fields are marked *