Menu Close

find-the-value-of-0-e-x-lnx-dx-for-that-use-A-n-0-n-1-t-n-n-1-ln-t-dt-




Question Number 26362 by abdo imad last updated on 24/Dec/17
find the value of ∫_0 ^∝ e^(−x) lnx dx   for that use  A_n   =   ∫_0 ^n  (1− (t/n))^(n−1) ln(t) dt  .
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\propto} {e}^{−{x}} {lnx}\:{dx}\:\:\:{for}\:{that}\:{use} \\ $$$${A}_{{n}} \:\:=\:\:\:\int_{\mathrm{0}} ^{{n}} \:\left(\mathrm{1}−\:\frac{{t}}{{n}}\right)^{{n}−\mathrm{1}} {ln}\left({t}\right)\:{dt}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *