Menu Close

find-the-value-of-0-e-x-sinxdx-in-that-x-E-x-




Question Number 26575 by abdo imad last updated on 26/Dec/17
find the value of ∫_0 ^∞   e^(−[x]) sinxdx   in that [x]=E(x)
findthevalueof0e[x]sinxdxinthat[x]=E(x)
Commented by abdo imad last updated on 29/Dec/17
let put I= ∫_0 ^∝  e^(−[x]) sinx dx   I_n   =  ∫_0 ^n   e^(−[x]) sinx dx  we have I= lim_(n−>∝)    I_n    but  I_n =  Σ_(k=0) ^(n−1)  ∫_k ^(k+1) e^(−[x])  sinxdx= Σ_(k=0) ^(k=n−1)  e^(−k)  ∫_k ^(k+1) sinx dx  I_n   = Σ_(k=0) ^(k=n−1)  e^(−k) [  −cosx]_k ^(k+1)   =  Σ_(k=0) ^(k=n−1)  e^(−k) ( cosk−cos(k+1))  =  Σ_(k=0) ^(k=n−1)  e^(−k)  cosk − Σ_(k=0) ^(k=n−1)  e^(−k) cos(k+1)  = Σ_(k=0) ^(k=n−1) e^(−k)  cosk  − Σ_(k=1) ^n e^(−(k−1)) cosk  = (1−e) Σ_(k=0) ^(n−1)  e^(−k)  cosk  but  Σ_(k=0) ^(n−1)  e^(−k)  cos k=  Re(  Σ_(k=0) ^(n−1)   e^((−1+i)k) )  and    Σ_(k=0) ^(k=n−1)  e^((−1+i)k)   = ((1 − e^((−1+i)n) )/(1−e^(−1+i) ))  lim _(n−>∝) I_n  =  (1−e) Σ_(k=0) ^∝  e^(−k) cosk  =(1−e) Re( (1/(1−e^(−1+i) )))  but    (1/(1−e^(−1+i) ))  =  (1/(1−e^(−1) ( cos(1) +isin(1)))  = ((1−e^(−1) cos(1) +i e^(−1) sin(1))/((1−e^(−1) cos(1))^2 +e^(−2) sin^2 (1)))  ⇒lim_(n−>∝)  I_n  =  ((1− e^(−1) cos(1))/((1− e^(−1) cos(1))^2  +e^(−2) sin^2 (1)))= ∫_0 ^∞  e^(−[x]) sinxdx
letputI=0e[x]sinxdxIn=0ne[x]sinxdxwehaveI=limn>∝InbutIn=k=0n1kk+1e[x]sinxdx=k=0k=n1ekkk+1sinxdxIn=k=0k=n1ek[cosx]kk+1=k=0k=n1ek(coskcos(k+1))=k=0k=n1ekcoskk=0k=n1ekcos(k+1)=k=0k=n1ekcoskk=1ne(k1)cosk=(1e)k=0n1ekcoskbutk=0n1ekcosk=Re(k=0n1e(1+i)k)andk=0k=n1e(1+i)k=1e(1+i)n1e1+ilimn>∝In=(1e)k=0ekcosk=(1e)Re(11e1+i)but11e1+i=11e1(cos(1)+isin(1)=1e1cos(1)+ie1sin(1)(1e1cos(1))2+e2sin2(1)limn>∝In=1e1cos(1)(1e1cos(1))2+e2sin2(1)=0e[x]sinxdx

Leave a Reply

Your email address will not be published. Required fields are marked *