Menu Close

find-the-value-of-0-e-x-x-dx-




Question Number 27613 by abdo imad last updated on 10/Jan/18
find the value of   ∫_0 ^∞   e^(−[x] −x) dx  .
findthevalueof0e[x]xdx.
Commented by abdo imad last updated on 12/Jan/18
I_n = Σ_(k=0) ^n  ∫_k ^(k+1) e^(−[x]−x) dx  I=lim I_n   I_n  = Σ_(k=) ^n e^(−k)  [e^(−x) ]_k ^(k+1) = Σ_(k=0) ^n e^(−k) ( e^(−k)  −e^(−k−1) )   I_n = Σ_(k=0) ^n  e^(−2k)   −e^(−1) Σ_(k=0) ^n  e^(−2k)   =(1−e^(−1) ) Σ_(k=0) ^n (e^(−2) )^k   ∫_0 ^∞   e^(−[x]−x) dx = lim_(n−>∝)  I_n  =(1−e^(−1) ).(1/(1−e^(−2) ))  = ((e^2 (1−e^(−1) ))/(e^2 −1))= ((e^2  −e)/(e^2 −1))=((e(e−1))/((e+1)(e−1)))=  (e/(e+1)) .
In=k=0nkk+1e[x]xdxI=limInIn=k=nek[ex]kk+1=k=0nek(ekek1)In=k=0ne2ke1k=0ne2k=(1e1)k=0n(e2)k0e[x]xdx=limn>∝In=(1e1).11e2=e2(1e1)e21=e2ee21=e(e1)(e+1)(e1)=ee+1.
Answered by prakash jain last updated on 12/Jan/18
=Σ_(i=0) ^∞ e^(−i) ∫_i ^(i+1) e^(−x) dx  =Σ_(i=0) ^∞ e^(−i) [−e^(−x) ]_i ^(i+1)   =Σ_(i=0) ^∞ (e^(−i) /e^i )−(e^(−i) /e^(i+1) )  =Σ_(i=0) ^∞ (1/e^(2i) )−(1/e^(2i+1) )  =Σ_(i=0) ^∞ (1/e^(2i) )−Σ_(i=0) ^∞ (1/e^(2i+1) )  =(1/(1−(1/e^2 )))−((1/e)/(1−(1/e^2 )))  =((e(e−1))/(e^2 −1))=(e/(e+1))
=i=0eiii+1exdx=i=0ei[ex]ii+1=i=0eieieiei+1=i=01e2i1e2i+1=i=01e2ii=01e2i+1=111e21/e11e2=e(e1)e21=ee+1

Leave a Reply

Your email address will not be published. Required fields are marked *