Question Number 27613 by abdo imad last updated on 10/Jan/18
$${find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]\:−{x}} {dx}\:\:. \\ $$
Commented by abdo imad last updated on 12/Jan/18
$${I}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\int_{{k}} ^{{k}+\mathrm{1}} {e}^{−\left[{x}\right]−{x}} {dx}\:\:{I}={lim}\:{I}_{{n}} \\ $$$${I}_{{n}} \:=\:\sum_{{k}=} ^{{n}} {e}^{−{k}} \:\left[{e}^{−{x}} \right]_{{k}} ^{{k}+\mathrm{1}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} {e}^{−{k}} \left(\:{e}^{−{k}} \:−{e}^{−{k}−\mathrm{1}} \right)\: \\ $$$${I}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{e}^{−\mathrm{2}{k}} \:\:−{e}^{−\mathrm{1}} \sum_{{k}=\mathrm{0}} ^{{n}} \:{e}^{−\mathrm{2}{k}} \:\:=\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)\:\sum_{{k}=\mathrm{0}} ^{{n}} \left({e}^{−\mathrm{2}} \right)^{{k}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]−{x}} {dx}\:=\:{lim}_{{n}−>\propto} \:{I}_{{n}} \:=\left(\mathrm{1}−{e}^{−\mathrm{1}} \right).\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{2}} } \\ $$$$=\:\frac{{e}^{\mathrm{2}} \left(\mathrm{1}−{e}^{−\mathrm{1}} \right)}{{e}^{\mathrm{2}} −\mathrm{1}}=\:\frac{{e}^{\mathrm{2}} \:−{e}}{{e}^{\mathrm{2}} −\mathrm{1}}=\frac{{e}\left({e}−\mathrm{1}\right)}{\left({e}+\mathrm{1}\right)\left({e}−\mathrm{1}\right)}=\:\:\frac{{e}}{{e}+\mathrm{1}}\:. \\ $$
Answered by prakash jain last updated on 12/Jan/18
$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−{i}} \int_{{i}} ^{{i}+\mathrm{1}} {e}^{−{x}} {dx} \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−{i}} \left[−{e}^{−{x}} \right]_{{i}} ^{{i}+\mathrm{1}} \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{e}^{−{i}} }{{e}^{{i}} }−\frac{{e}^{−{i}} }{{e}^{{i}+\mathrm{1}} } \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{e}^{\mathrm{2}{i}} }−\frac{\mathrm{1}}{{e}^{\mathrm{2}{i}+\mathrm{1}} } \\ $$$$=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{e}^{\mathrm{2}{i}} }−\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{e}^{\mathrm{2}{i}+\mathrm{1}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{{e}^{\mathrm{2}} }}−\frac{\mathrm{1}/{e}}{\mathrm{1}−\frac{\mathrm{1}}{{e}^{\mathrm{2}} }} \\ $$$$=\frac{{e}\left({e}−\mathrm{1}\right)}{{e}^{\mathrm{2}} −\mathrm{1}}=\frac{{e}}{{e}+\mathrm{1}} \\ $$