Menu Close

find-the-value-of-0-ln-1-t-2-1-t-2-dt-




Question Number 27181 by abdo imad last updated on 02/Jan/18
find the value of  ∫_0 ^(∝ ) ((ln(1+t^2 ))/(1−t^2 )) dt
findthevalueof0ln(1+t2)1t2dt
Commented by abdo imad last updated on 08/Jan/18
let use the ch. t=(1/x)  I= −∫_0 ^∞  ((ln(1+(1/x^2 )))/(1− (1/x^2 ))) ((−dx)/x^2 )  = ∫_0 ^∞   ((ln(1+x^2 ) −2lnx)/(x^2  −1))dx  =−∫_0 ^∞  ((ln(1+x^2 ))/(1−x^2 ))dx +2∫_0 ^∞ ((lnx)/(1−x^2 ))dx  ⇒2I= 2 ∫_0 ^∞  ((lnx)/(1−x^2 ))dx  ⇒I= ∫_0 ^∞   ((lnx)/(1−x^2 ))dx=∫_0 ^1 ((lnx)/(1−x^2 )) + ∫_1 ^∝ ((lnx)/(1−x^2 ))dx  the ch.x=(1/u) give  ∫_1 ^∝ ((lnx)/(1−x^2 )) dx= −∫_0 ^1  ((−lnu)/(1−(1/u^2 ))) ((−du)/u^2 )  =−∫_0 ^1  ((lnu)/(u^2 −1))du=∫_0 ^1   ((lnu)/(1−u^2 ))du  ⇒I= 2∫_0 ^1 ((lnx)/(1 −x^2 ))dx  I= 2 ∫_0 ^1 ( Σ_(n=0) ^∝  x^(2n) )lnx dx  I= 2 Σ_(n=0) ^∝ ∫_0 ^1 x^(2n) lnxdx intrgrstion by psrts  ∫_0 ^1  x^(2n) lnxdx=[ (1/(2n+1)) x^(2n+1) lnx]_0 ^1 − ∫_0 ^1 (x^(2n) /(2n+1))dx  =− (1/((2n+1)^2 ))  I= −2 Σ_(n=0) ^∝   (1/((2n+1)^2 ))=−2.(π^2 /8)  I= −(π^2 /4)  .
letusethech.t=1xI=0ln(1+1x2)11x2dxx2=0ln(1+x2)2lnxx21dx=0ln(1+x2)1x2dx+20lnx1x2dx2I=20lnx1x2dxI=0lnx1x2dx=01lnx1x2+1lnx1x2dxthech.x=1ugive1lnx1x2dx=01lnu11u2duu2=01lnuu21du=01lnu1u2duI=201lnx1x2dxI=201(n=0x2n)lnxdxI=2n=001x2nlnxdxintrgrstionbypsrts01x2nlnxdx=[12n+1x2n+1lnx]0110x2n2n+1dx=1(2n+1)2I=2n=01(2n+1)2=2.π28I=π24.

Leave a Reply

Your email address will not be published. Required fields are marked *