Question Number 27181 by abdo imad last updated on 02/Jan/18
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\propto\:} \frac{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{\mathrm{1}−{t}^{\mathrm{2}} }\:{dt} \\ $$
Commented by abdo imad last updated on 08/Jan/18
$${let}\:{use}\:{the}\:{ch}.\:{t}=\frac{\mathrm{1}}{{x}} \\ $$$${I}=\:−\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}{\mathrm{1}−\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\:\frac{−{dx}}{{x}^{\mathrm{2}} } \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:−\mathrm{2}{lnx}}{{x}^{\mathrm{2}} \:−\mathrm{1}}{dx} \\ $$$$=−\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}\:+\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$\Rightarrow\mathrm{2}{I}=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$\Rightarrow{I}=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }\:+\:\int_{\mathrm{1}} ^{\propto} \frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$${the}\:{ch}.{x}=\frac{\mathrm{1}}{{u}}\:{give} \\ $$$$\int_{\mathrm{1}} ^{\propto} \frac{{lnx}}{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{−{lnu}}{\mathrm{1}−\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}\:\frac{−{du}}{{u}^{\mathrm{2}} } \\ $$$$=−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{lnu}}{{u}^{\mathrm{2}} −\mathrm{1}}{du}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{lnu}}{\mathrm{1}−{u}^{\mathrm{2}} }{du} \\ $$$$\Rightarrow{I}=\:\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\mathrm{1}\:−{x}^{\mathrm{2}} }{dx} \\ $$$${I}=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\:\sum_{{n}=\mathrm{0}} ^{\propto} \:{x}^{\mathrm{2}{n}} \right){lnx}\:{dx} \\ $$$${I}=\:\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\propto} \int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}{n}} {lnxdx}\:{intrgrstion}\:{by}\:{psrts} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}{n}} {lnxdx}=\left[\:\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:{x}^{\mathrm{2}{n}+\mathrm{1}} {lnx}\right]_{\mathrm{0}} ^{\mathrm{1}} −\:\overset{\mathrm{1}} {\int}_{\mathrm{0}} \frac{{x}^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}}{dx} \\ $$$$=−\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${I}=\:−\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=−\mathrm{2}.\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$${I}=\:−\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:\:. \\ $$