find-the-value-of-0-ln-1-t-2-1-t-2-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 27181 by abdo imad last updated on 02/Jan/18 findthevalueof∫0∝ln(1+t2)1−t2dt Commented by abdo imad last updated on 08/Jan/18 letusethech.t=1xI=−∫0∞ln(1+1x2)1−1x2−dxx2=∫0∞ln(1+x2)−2lnxx2−1dx=−∫0∞ln(1+x2)1−x2dx+2∫0∞lnx1−x2dx⇒2I=2∫0∞lnx1−x2dx⇒I=∫0∞lnx1−x2dx=∫01lnx1−x2+∫1∝lnx1−x2dxthech.x=1ugive∫1∝lnx1−x2dx=−∫01−lnu1−1u2−duu2=−∫01lnuu2−1du=∫01lnu1−u2du⇒I=2∫01lnx1−x2dxI=2∫01(∑n=0∝x2n)lnxdxI=2∑n=0∝∫01x2nlnxdxintrgrstionbypsrts∫01x2nlnxdx=[12n+1x2n+1lnx]01−∫10x2n2n+1dx=−1(2n+1)2I=−2∑n=0∝1(2n+1)2=−2.π28I=−π24. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-value-of-D-x-2-y-2-dxdy-with-D-x-y-R-2-1-x-2-and-1-x-y-x-Next Next post: Question-158255 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.