Menu Close

find-the-value-of-0-pi-2-dx-1-tanx-2-




Question Number 63089 by mathmax by abdo last updated on 28/Jun/19
find the value of ∫_0 ^(π/2)   (dx/(1+(tanx)^(√2) )) .
findthevalueof0π2dx1+(tanx)2.
Commented by edafe ovwie last updated on 29/Jun/19
using  ∫_b ^a f(x)dx=∫_b ^a f(a+b−x)dx  let  𝛀=∫_0 ^(π/2) (1/(1+(tanx)^(√2) ))dx.....1  𝛀=∫_0 ^(π/2) (1/(1+(tan((𝛑/2)−x))^(√2) ))dx  tan((π/2)−x)=cotx=(1/(tanx))  𝛀=∫_0 ^(π/2) (1/(1+(cotx)^(√2) ))dx  𝛀=∫_0 ^(π/2) (((tanx)^(√x) )/(1+(tanx)^(√2) ))dx...2  add 1 and 2  2𝛀=∫_0 ^(π/2) 1dx  2Ω=(π/2)  Ω=(π/4)  ∫_0 ^(π/2) (1/(1+(tanx)^(√2) ))dx=(π/4)
usingbaf(x)dx=baf(a+bx)dxletMissing \left or extra \rightMissing \left or extra \righttan(π2x)=cotx=1tanxMissing \left or extra \rightMissing \left or extra \rightadd1and22Ω=0π21dx2Ω=π2Ω=π4Missing \left or extra \right
Commented by mathmax by abdo last updated on 29/Jun/19
thank you sir .
thankyousir.
Commented by mathmax by abdo last updated on 03/Jul/19
let A =∫_0 ^(π/2)    (dx/(1+(tanx)^(√2) ))  changement x =(π/2)−t give  A =−∫_0 ^(π/2)    ((−dt)/(1+ ((1/(tant)))^(√2) )) = ∫_0 ^(π/2)     (((tant)^(√2) )/(1+(tant)^(√2) )) dt =∫_0 ^(π/2)  ((1+(tant)^(√2) −1)/(1+(tant)^(√2) ))dt  =(π/2) −A ⇒ 2A =(π/2) ⇒ A =(π/4) .
letA=0π2dx1+(tanx)2changementx=π2tgiveA=0π2dt1+(1tant)2=0π2(tant)21+(tant)2dt=0π21+(tant)211+(tant)2dt=π2A2A=π2A=π4.

Leave a Reply

Your email address will not be published. Required fields are marked *