Menu Close

find-the-value-of-0-pi-2-ln-cos-d-and-0-pi-2-ln-sin-d-




Question Number 26357 by abdo imad last updated on 24/Dec/17
find the value of ∫_0 ^(π/2)  ln(cosθ)dθ  and   ∫_0 ^(π/2)  ln(sinθ)dθ   .
$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left({cos}\theta\right){d}\theta\:\:{and}\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left({sin}\theta\right){d}\theta\:\:\:. \\ $$
Commented by prakash jain last updated on 24/Dec/17
∫_0 ^(π/2) ln (cos x)dx  u=(π/2)−x  du=−dx  I=∫_0 ^(π/2) ln (sin x)dx=−∫_(π/2) ^0 ln (cos u)du       =∫_0 ^(π/2) ln (cos x)dx  2I=∫_0 ^(π/2) ln (cos xsin x)dx  =∫_0 ^(π/2) ln sin 2xdx−∫_0 ^(π/2) ln 2dx  =I−(π/2)ln 2  I=−(π/2)ln 2
$$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\left(\mathrm{cos}\:{x}\right){dx} \\ $$$${u}=\frac{\pi}{\mathrm{2}}−{x} \\ $$$${du}=−{dx} \\ $$$${I}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\left(\mathrm{sin}\:{x}\right){dx}=−\int_{\pi/\mathrm{2}} ^{\mathrm{0}} \mathrm{ln}\:\left(\mathrm{cos}\:{u}\right){du} \\ $$$$\:\:\:\:\:=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\left(\mathrm{cos}\:{x}\right){dx} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\left(\mathrm{cos}\:{x}\mathrm{sin}\:{x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\mathrm{sin}\:\mathrm{2}{xdx}−\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\mathrm{2}{dx} \\ $$$$={I}−\frac{\pi}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$$${I}=−\frac{\pi}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$
Answered by prakash jain last updated on 24/Dec/17
−(π/2)ln 2
$$−\frac{\pi}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *