Menu Close

find-the-value-of-0-pi-2-tanx-dx-




Question Number 27828 by abdo imad last updated on 15/Jan/18
find the value of   ∫_0 ^(π/2) (√(tanx))dx .
findthevalueof0π2tanxdx.
Commented by NECx last updated on 15/Jan/18
thanks for this question.  I really need the answer.
thanksforthisquestion.Ireallyneedtheanswer.
Commented by abdo imad last updated on 15/Jan/18
let use the ch.  (√(tanx))=t ⇔  tanx=t^2   ⇔ x= arctan (t^2 )  I= ∫_0 ^(π/2) (√(tanx))dx= ∫_0 ^∞  t ((2t)/(1+t^4 )) dt  =∫_0 ^∝    ((2t^2 )/(1+t^4 ))dt  = (1/2) ∫_(−∝) ^(+∝)    ((2t^2 )/(1+t^4 ))dt   let introduce the complex function  f(z)= ((2z^2 )/(1+z^4 ))  let find the poles of f?  1+z^4 =0⇔  z^4 = e^(i(2k+1)π)  so the poles are z_(k ) = e^(i(2k+1)(π/4))   and k∈[[0,3]] we have z_0 = e^(i(π/4)) ,  z_1 = e^(i((3π)/4))   , z_2 = e^(i((5π)/4))   z_3 = e^(i((7π)/4))   and ∫_R^    f(z)dz= 2iπ( Res(f,z_0 ) +Res(f,z_1  ))  Res(f ,z_0 )=  ((2z_0 ^2 )/(4z_0 ^3 ))= (1/2) z_0 ^(−1) =(1/2) e^(−i(π/4))   Res(f,z_1 )= ((2z_1 ^2 )/(4z_1 ^3 ))=(1/2) z_1 ^(−1) =−(1/2) e^(−i((3π)/4)) =(1/2) e^(−i(π−(π/4)))   = −(1/2) e^(i(π/4))   ∫_R  f(z)dz=2iπ[ (1/2)( e^(−i(π/4)) −e^(i(π/4)) )]=iπ(−2i sin((π/4)))  =2π ((√2)/2) =π(√2)⇒  I= (1/2) ∫_R  f(z)dz= ((π(√2))/2)  .
letusethech.tanx=ttanx=t2x=arctan(t2)I=0π2tanxdx=0t2t1+t4dt=02t21+t4dt=12+2t21+t4dtletintroducethecomplexfunctionf(z)=2z21+z4letfindthepolesoff?1+z4=0z4=ei(2k+1)πsothepolesarezk=ei(2k+1)π4andk[[0,3]]wehavez0=eiπ4,z1=ei3π4,z2=ei5π4z3=ei7π4andRf(z)dz=2iπ(Res(f,z0)+Res(f,z1))Res(f,z0)=2z024z03=12z01=12eiπ4Res(f,z1)=2z124z13=12z11=12ei3π4=12ei(ππ4)=12eiπ4Rf(z)dz=2iπ[12(eiπ4eiπ4)]=iπ(2isin(π4))=2π22=π2I=12Rf(z)dz=π22.
Answered by ajfour last updated on 15/Jan/18
let (√(tan x))=t  ⇒   dx=((2tdt)/(1+t^4 ))  ∫_0 ^(  π/2) (√(tan x))dx=∫_0 ^(  ∞)  ((2t^2 dt)/(1+t^4 ))       =∫_0 ^(  ∞) ((2dt)/(((1/t^2 )+t^2 )))    =∫_0 ^(  ∞) (((1−(1/t^2 ))dt)/((t+(1/t))^2 −2))+∫_0 ^(  ∞) (((1+(1/t^2 ))dt)/((t−(1/t))^2 +2))  =(1/(2(√2))) ln (((t+(1/t)−(√2))/(t+(1/t)+(√2))))∣_0 ^∞ +(1/( (√2)))tan^(−1) (((t−(1/t))/( (√2))))∣_0 ^∞   =0+(1/( (√2)))((π/2)+(π/2)) =(π/( (√2))) .
lettanx=tdx=2tdt1+t40π/2tanxdx=02t2dt1+t4=02dt(1t2+t2)=0(11t2)dt(t+1t)22+0(1+1t2)dt(t1t)2+2=122ln(t+1t2t+1t+2)0+12tan1(t1t2)0=0+12(π2+π2)=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *