find-the-value-of-0-pi-2-x-1-cosx-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 43999 by maxmathsup by imad last updated on 19/Sep/18 findthevalueof∫0π2x1−cosxdx. Commented by maxmathsup by imad last updated on 20/Sep/18 letI=∫0π2x1−cosxdx⇒I=∫0π2x2sin2(x2)dx=12∫0π2xsin(x2)dx=x2=t12∫0π42tsin(t)2dt=42∫0π4tsintdtchangementtan(t2)=ugiveI=42∫02−12arctan(u)2u1+u22du1+u2=42∫02−1arctan(u)uduletf(x)=∫02−1arctan(xu)udu⇒I=42f(1)wehavef′(x)=∫02−1du1+x2u2=xu=α∫0x(2−1)11+α2dαx=1x∫0x(2−1)dα1+α2=1x[arctan(α)]0x(2−1)=arctan{x(2−1)}x⇒f(x)=∫0xarctan{t(2−1)}tdt+kk=f(0)=0⇒f(x)=∫0xarctan{t(2−1)}tdt⇒f(1)=∫01arctan{t(2−1)}tdtwehavearctan′(x)=11+x2=∑n=0∞(−1)nx2n⇒arctanx=∑n=0∞(−1)n2n+1x2n+1⇒arctan{t(2−1)}=∑n=0∞(−1)n2n+1t2n+1(2−1)2n+1⇒f(1)=∑n=0∞∫01(−1)n(2−1)2n+12n+1t2ndt=∑n=0∞(−1)n(2−1)2n+1(2n+1)2andI=42f(1)… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-175066Next Next post: calculate-A-0-1-x-arctanx-dx-0-1-arctanx-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.