Menu Close

find-the-value-of-0-pi-2-x-1-cosx-dx-




Question Number 43999 by maxmathsup by imad last updated on 19/Sep/18
find the value of ∫_0 ^(π/2)    (x/( (√(1−cosx))))dx.
findthevalueof0π2x1cosxdx.
Commented by maxmathsup by imad last updated on 20/Sep/18
let I = ∫_0 ^(π/2)   (x/( (√(1−cosx))))dx ⇒I =∫_0 ^(π/2)      (x/( (√(2sin^2 ((x/2))))))dx  =(1/( (√2))) ∫_0 ^(π/2)      (x/(sin((x/2))))dx =_((x/2)=t)     (1/( (√2))) ∫_0 ^(π/4)     ((2t)/(sin(t))) 2 dt =(4/( (√2))) ∫_0 ^(π/4)    (t/(sint))dt  changement tan((t/2))=u give   I  = (4/( (√2))) ∫_0 ^((√2)−1)    ((2arctan(u))/((2u)/(1+u^2 )))  ((2du)/(1+u^2 )) =4(√( 2))   ∫_0 ^((√2)−1)     ((arctan(u))/u) du  let f(x)= ∫_0 ^((√2)−1)   ((arctan(xu))/u) du ⇒ I =4(√2) f(1)  we have f^′ (x) = ∫_0 ^((√2)−1)   (du/(1+x^2 u^2 )) =_(xu =α)   ∫_0 ^(x((√2)−1))    (1/(1+α^2 )) (dα/x)  = (1/x) ∫_0 ^(x((√2)−1))   (dα/(1+α^2 )) =(1/x) [arctan(α)]_0 ^(x((√2)−1))   =((arctan{x((√2)−1)})/x) ⇒f(x) =∫_0 ^x    ((arctan{t((√2)−1)})/t) dt +k  k=f(0) =0 ⇒f(x) =∫_0 ^x   ((arctan{t((√2)−1)})/t)dt  ⇒  f(1) =∫_0 ^1     ((arctan{t((√2) −1)})/t)dtwe have  arctan^′ (x) =(1/(1+x^2 )) =Σ_(n=0) ^∞  (−1)^n x^(2n)    ⇒arctanx =Σ_(n=0) ^∞  (((−1)^n )/(2n+1)) x^(2n+1) ⇒  arctan{t((√2)−1)} =Σ_(n=0) ^∞   (((−1)^n )/(2n+1)) t^(2n+1) ((√2)−1)^(2n+1)   ⇒  f(1) =Σ_(n=0) ^∞ ∫_0 ^1    (((−1)^n  ((√2)−1)^(2n+1) )/(2n+1)) t^(2n) dt  =Σ_(n=0) ^∞    (((−1)^n ((√2)−1)^(2n+1) )/((2n+1)^2 ))   and I =4(√2)f(1)...
letI=0π2x1cosxdxI=0π2x2sin2(x2)dx=120π2xsin(x2)dx=x2=t120π42tsin(t)2dt=420π4tsintdtchangementtan(t2)=ugiveI=420212arctan(u)2u1+u22du1+u2=42021arctan(u)uduletf(x)=021arctan(xu)uduI=42f(1)wehavef(x)=021du1+x2u2=xu=α0x(21)11+α2dαx=1x0x(21)dα1+α2=1x[arctan(α)]0x(21)=arctan{x(21)}xf(x)=0xarctan{t(21)}tdt+kk=f(0)=0f(x)=0xarctan{t(21)}tdtf(1)=01arctan{t(21)}tdtwehavearctan(x)=11+x2=n=0(1)nx2narctanx=n=0(1)n2n+1x2n+1arctan{t(21)}=n=0(1)n2n+1t2n+1(21)2n+1f(1)=n=001(1)n(21)2n+12n+1t2ndt=n=0(1)n(21)2n+1(2n+1)2andI=42f(1)

Leave a Reply

Your email address will not be published. Required fields are marked *