Menu Close

find-the-value-of-0-pi-2-xdx-1-cosx-




Question Number 37071 by math khazana by abdo last updated on 08/Jun/18
find the value of ∫_0 ^(π/2)    ((xdx)/(1+cosx))
findthevalueof0π2xdx1+cosx
Commented by math khazana by abdo last updated on 10/Jun/18
changement tan((x/2))=t give   I = ∫_0 ^1    ((2arctan(t))/(1+((1−t^2 )/(1+t^2 ))))  ((2dt)/(1+t^2 )) =4 ∫_0 ^1    ((arctan(t))/(1+t^2  +1−t^2 ))dt  =2 ∫_0 ^1   arctan(t)dt and by parts  I =2 { [t arctan(t)]_0 ^1   −∫_0 ^1   (t/(1+t^2 ))dt}  =2{ (π/4)  −(1/2)[ln(1+t^2 )]_0 ^1 }  =(π/2) −ln(2)  ★ I =(π/2) −ln(2)★
changementtan(x2)=tgiveI=012arctan(t)1+1t21+t22dt1+t2=401arctan(t)1+t2+1t2dt=201arctan(t)dtandbypartsI=2{[tarctan(t)]0101t1+t2dt}=2{π412[ln(1+t2)]01}=π2ln(2)I=π2ln(2)
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Jun/18
∫_0 ^(Π/2) (x/(2cos^2 (x/2)))dx  (1/2)∫_0 ^(Π/2) ((xsec^2 (x/2))/)dx  let I_1 =∫xsec^2 (x/2)dx  =x∫sec^2 (x/2)dx−∫[(dx/dx)∫sec^2 (x/2)dx]dx  =x((tan(x/2))/(1/2))−∫((tan(x/2))/(1/2))dx   =x×2tan(x/2)−4ln∣sec(x/2)∣  so required ans is  (1/2){2xtan(x/2)−4ln∣sec(x/2)∣}_0 ^(Π/2)   =(1/2)[{2×(Π/2)×1−4ln((√2) )}−{2×0×0−4ln1}]  =(Π/2)−2×(1/2)ln2  =(Π/2)−ln2
0Π2x2cos2x2dx120Π2xsec2x2dxletI1=xsec2x2dx=xsec2x2dx[dxdxsec2x2dx]dx=xtanx212tanx212dx=x×2tanx24lnsecx2sorequiredansis12{2xtanx24lnsecx2}0Π2=12[{2×Π2×14ln(2)}{2×0×04ln1}]=Π22×12ln2=Π2ln2
Commented by math khazana by abdo last updated on 10/Jun/18
correct answer thanks sir Tanmay.
correctanswerthankssirTanmay.
Answered by MJS last updated on 10/Jun/18
∫(x/(1+cos x))dx=        [((∫u′v=uv−∫uv′)),((u′=(1/(1+cos x)) ⇒ u=((sin x)/(1+cos x)))),((      [((u=∫(dx/(1+cos x))=∫((tan (x/2))/(sin x))dx=)),((     [t=(x/2) → dx=2dt])),((=2∫((tan t)/(sin 2t))dt=∫((tan t)/(sin t cos t))dt=∫sec^2  t dt=)),((=tan t=tan (x/2)=((sin x)/(1+cos x)))) ])),((v=x ⇒ v′=1)) ]  =((xsin x)/(1+cos x))−∫((sin x)/(1+cos x))dx=       [t=1+cos x → dx=−(dt/(sin x))]  =((xsin x)/(1+cos x))+∫(dt/t)=((xsin x)/(1+cos x))+ln t=  =((xsin x)/(1+cos x))+ln(1+cos x)+C
x1+cosxdx=[uv=uvuvu=11+cosxu=sinx1+cosx[u=dx1+cosx=tanx2sinxdx=[t=x2dx=2dt]=2tantsin2tdt=tantsintcostdt=sec2tdt==tant=tanx2=sinx1+cosx]v=xv=1]=xsinx1+cosxsinx1+cosxdx=[t=1+cosxdx=dtsinx]=xsinx1+cosx+dtt=xsinx1+cosx+lnt==xsinx1+cosx+ln(1+cosx)+C

Leave a Reply

Your email address will not be published. Required fields are marked *