Menu Close

find-the-value-of-0-pi-4-cosx-sinx-tanx-dx-




Question Number 36057 by abdo mathsup 649 cc last updated on 28/May/18
find the value of  ∫_0 ^(π/4)     ((cosx)/(sinx +tanx))dx
findthevalueof0π4cosxsinx+tanxdx
Commented by abdo mathsup 649 cc last updated on 30/May/18
let I = ∫_0 ^(π/4)    ((cosx)/(sinx +tanx))dx  I = ∫_0 ^(π/4)    ((cosx)/(sinx +((sinx)/(cosx))))dx = ∫_0 ^(π/4)    ((cos^2 x)/(sinx.cosx +sinx))dx  changement   tan((x/2)) =t give  I = ∫_0 ^((√2) −1)       (((((1−t^2 )/(1+t^2 )))^2 )/(((2t (1−t^(2)) )/((1+t^2 )^2 ))  +((2t)/(1+t^2 )))) ((2dt)/(1+t^2 ))  = 2∫_0 ^((√2) −1)        (((1−t^2 )^2 )/(2t(1−t^2 ) +2t(1+t^2 )))  (dt/(1+t^2 ))  =2 ∫_0 ^((√2) −1)        (((1−t^2 )^2 )/((1+t^2 )( 2t −2t^3  +2t +2t^3 )))dt  = (1/2) ∫_0 ^((√2) −1)       (((1−t^2 )^2 )/((1+t^2 )t)) dt ⇒  2I = ∫_0 ^((√2)−1)     ((t^4  −2t^2  +1)/(t^3  +t))dt  =∫_0 ^((√2)−1)     ((t(t^3 +t)−t^2 −2t^2 +1)/(t^(3 ) +t))dt  = ∫_0 ^((√2)−1)   t dt  +∫_0 ^((√2) −1)  ((−3t^2  +1)/(t^3  +t))dt  but  ∫_0 ^((√2) −1) tdt =[(t^2 /2)]_0 ^((√2)−1)  =((((√2)−1)^2 )/2)  let decompose  F(t) = ((−3t^2  +1)/(t^3 +t))  F(t) = ((−3t^2  +1)/(t^3  +t)) = (a/t) +((bt +c)/(t^2  +1))  a=lim_(t→0) tF(t) = 1 =a  lim_(t→+∞) t F(t) = −3 =a +b ⇒b=−3−a=−4  F(t) =  (1/t) +((−4t +c)/(t^(2 ) +1))  F(1) =−1 = 1 +((−4+c)/2) =−1 +(c/2) ⇒c=0 ⇒  F(t)= (1/t)  −((4t)/(t^2  +1)) ⇒  ∫_0 ^((√2) −1)   ((−3t^2  +1)/(t^3   +t))dt = ∫_0 ^((√2)−1) { (1/t) −((4t)/(t^2  +1))}dt  =[ln∣t∣ −2 ln(t^2  +1)]_0 ^((√2) −1)   = [ln( (t/((t^2 +1)^2 )))]_0 ^((√2)−1)  = ln((((√2) −1)/({((√2) −1)^2 +1}^( ))) −ln(0^+ )  =+∞  so this integral is divergent !
letI=0π4cosxsinx+tanxdxI=0π4cosxsinx+sinxcosxdx=0π4cos2xsinx.cosx+sinxdxchangementtan(x2)=tgiveI=021(1t21+t2)22t(1t2)(1+t2)2+2t1+t22dt1+t2=2021(1t2)22t(1t2)+2t(1+t2)dt1+t2=2021(1t2)2(1+t2)(2t2t3+2t+2t3)dt=12021(1t2)2(1+t2)tdt2I=021t42t2+1t3+tdt=021t(t3+t)t22t2+1t3+tdt=021tdt+0213t2+1t3+tdtbut021tdt=[t22]021=(21)22letdecomposeF(t)=3t2+1t3+tF(t)=3t2+1t3+t=at+bt+ct2+1a=limt0tF(t)=1=alimt+tF(t)=3=a+bb=3a=4F(t)=1t+4t+ct2+1F(1)=1=1+4+c2=1+c2c=0F(t)=1t4tt2+10213t2+1t3+tdt=021{1t4tt2+1}dt=[lnt2ln(t2+1)]021=[ln(t(t2+1)2)]021=ln(21{(21)2+1}()ln(0+)=+sothisintegralisdivergent!
Answered by tanmay.chaudhury50@gmail.com last updated on 28/May/18
∫_0 ^(Π/4) ((cos^2 x)/(sinxcosx+sinx )) dx  (−1)∫_0 ^(Π/4) ((1−cos^2 x−1)/(sinx(1+cosx)))dx  (−1)∫_0 ^(Π/4) ((1−cosx)/(sinx))dx+∫_0 ^(Π/4) ((sinx)/(sin^2 x(1+cosx)))dx  ∫_0 ^(Π/4) ((cotx−cosecx)/)−∫_1 ^(1/( (√2))) (dt/((1−t^2 )(1+t)))  ∣lnsinx−lntan(x/2)∣_0 ^(Π/4) +I_2   I_2 =∫_1 ^(1/( (√2))) (A/(1+t))+(B/(1−t))+(C/((1+t)^2 )) dt  (1/((1+t)^2 (1−t)))=(A/(1+t))+(B/(1−t))+(C/((1+t)^2 ))  1=A(1+t)(1−t)+B(1+t)^2 +C(1−t)  1=A(1−t^2 )+B(1+2t+t^2 )+C(1−t)  A−At^2 +B+2Bt+Bt^2 +C−Ct=1  A+B+C+t(2B−C)+t^2 (B−A)=1  A+B+C=1  2B−C=0  B−A=0  A=B  2B−C=0  C=2B  A+B+C=1  B+B+2B=1  B=(1/4)  A=(1/4)  C=(1/2)  ∫_1 ^(1/( (√2))) ((1/4)/(1+t))dt+∫_1 ^(1/( (√2))) ((1/4)/(1−t))dt+∫_1 ^(1/( (√2))) ((1/2)/((1+t)^2 ))dt  ∣(1/4)ln(1+t)−(1/4)ln(1−t)−(1/2)×(1/(1+t))∣_1 ^(1/( (√2)))
0Π4cos2xsinxcosx+sinxdx(1)0Π41cos2x1sinx(1+cosx)dx(1)0Π41cosxsinxdx+0Π4sinxsin2x(1+cosx)dx0Π4cotxcosecx112dt(1t2)(1+t)lnsinxlntanx20Π4+I2I2=112A1+t+B1t+C(1+t)2dt1(1+t)2(1t)=A1+t+B1t+C(1+t)21=A(1+t)(1t)+B(1+t)2+C(1t)1=A(1t2)+B(1+2t+t2)+C(1t)AAt2+B+2Bt+Bt2+CCt=1A+B+C+t(2BC)+t2(BA)=1A+B+C=12BC=0BA=0A=B2BC=0C=2BA+B+C=1B+B+2B=1B=14A=14C=12112141+tdt+112141tdt+11212(1+t)2dt14ln(1+t)14ln(1t)12×11+t112
Answered by sma3l2996 last updated on 28/May/18
A=∫_0 ^(π/4) ((cosx)/(sinx+tanx))dx=∫_0 ^(π/4) ((cos^2 x)/(cosxsinx+sinx))dx  =∫_0 ^(π/4) ((1−sin^2 x)/(sinx(cosx+1)))dx=∫_0 ^(π/4) (dx/(sinx(cosx+1)))−∫_0 ^(π/4) ((sinx)/(1+cosx))dx  =∫_0 ^(π/4) (dx/(sinx(cosx+1)))+[ln∣1+cosx∣]_0 ^(π/4)   let  u=tanx/2⇒dx=((2du)/(1+u^2 ))  sinx=2cos(x/2)sin(x/2)=((2u)/(1+u^2 ))  1+cosx=2cos^2 (x/2)=(2/(1+u^2 ))  A=ln((((√2)+1)/2))−ln2+∫_0 ^(tan^(−1) (π/8)) (1/(((2u)/(1+u^2 ))×(2/(1+u^2 ))))×((2du)/(1+u^2 ))  A=ln((√2)+2)−2ln2+(1/2)∫_0 ^((√2)−1) ((1+u^2 )/u)du  =ln((√2)+2)−2ln2+(1/2)[lnu+(1/2)u^2 ]_0 ^((√2)−1)   A=−∞    because (lim_(u→0) lnu=−∞)
A=0π/4cosxsinx+tanxdx=0π/4cos2xcosxsinx+sinxdx=0π/41sin2xsinx(cosx+1)dx=0π/4dxsinx(cosx+1)0π/4sinx1+cosxdx=0π/4dxsinx(cosx+1)+[ln1+cosx]0π/4letu=tanx/2dx=2du1+u2sinx=2cos(x/2)sin(x/2)=2u1+u21+cosx=2cos2(x/2)=21+u2A=ln(2+12)ln2+0tan1(π/8)12u1+u2×21+u2×2du1+u2A=ln(2+2)2ln2+120211+u2udu=ln(2+2)2ln2+12[lnu+12u2]021A=because(limlnuu0=)

Leave a Reply

Your email address will not be published. Required fields are marked *