Question Number 36057 by abdo mathsup 649 cc last updated on 28/May/18

Commented by abdo mathsup 649 cc last updated on 30/May/18
![let I = ∫_0 ^(π/4) ((cosx)/(sinx +tanx))dx I = ∫_0 ^(π/4) ((cosx)/(sinx +((sinx)/(cosx))))dx = ∫_0 ^(π/4) ((cos^2 x)/(sinx.cosx +sinx))dx changement tan((x/2)) =t give I = ∫_0 ^((√2) −1) (((((1−t^2 )/(1+t^2 )))^2 )/(((2t (1−t^(2)) )/((1+t^2 )^2 )) +((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) = 2∫_0 ^((√2) −1) (((1−t^2 )^2 )/(2t(1−t^2 ) +2t(1+t^2 ))) (dt/(1+t^2 )) =2 ∫_0 ^((√2) −1) (((1−t^2 )^2 )/((1+t^2 )( 2t −2t^3 +2t +2t^3 )))dt = (1/2) ∫_0 ^((√2) −1) (((1−t^2 )^2 )/((1+t^2 )t)) dt ⇒ 2I = ∫_0 ^((√2)−1) ((t^4 −2t^2 +1)/(t^3 +t))dt =∫_0 ^((√2)−1) ((t(t^3 +t)−t^2 −2t^2 +1)/(t^(3 ) +t))dt = ∫_0 ^((√2)−1) t dt +∫_0 ^((√2) −1) ((−3t^2 +1)/(t^3 +t))dt but ∫_0 ^((√2) −1) tdt =[(t^2 /2)]_0 ^((√2)−1) =((((√2)−1)^2 )/2) let decompose F(t) = ((−3t^2 +1)/(t^3 +t)) F(t) = ((−3t^2 +1)/(t^3 +t)) = (a/t) +((bt +c)/(t^2 +1)) a=lim_(t→0) tF(t) = 1 =a lim_(t→+∞) t F(t) = −3 =a +b ⇒b=−3−a=−4 F(t) = (1/t) +((−4t +c)/(t^(2 ) +1)) F(1) =−1 = 1 +((−4+c)/2) =−1 +(c/2) ⇒c=0 ⇒ F(t)= (1/t) −((4t)/(t^2 +1)) ⇒ ∫_0 ^((√2) −1) ((−3t^2 +1)/(t^3 +t))dt = ∫_0 ^((√2)−1) { (1/t) −((4t)/(t^2 +1))}dt =[ln∣t∣ −2 ln(t^2 +1)]_0 ^((√2) −1) = [ln( (t/((t^2 +1)^2 )))]_0 ^((√2)−1) = ln((((√2) −1)/({((√2) −1)^2 +1}^( ))) −ln(0^+ ) =+∞ so this integral is divergent !](https://www.tinkutara.com/question/Q36254.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 28/May/18

Answered by sma3l2996 last updated on 28/May/18
![A=∫_0 ^(π/4) ((cosx)/(sinx+tanx))dx=∫_0 ^(π/4) ((cos^2 x)/(cosxsinx+sinx))dx =∫_0 ^(π/4) ((1−sin^2 x)/(sinx(cosx+1)))dx=∫_0 ^(π/4) (dx/(sinx(cosx+1)))−∫_0 ^(π/4) ((sinx)/(1+cosx))dx =∫_0 ^(π/4) (dx/(sinx(cosx+1)))+[ln∣1+cosx∣]_0 ^(π/4) let u=tanx/2⇒dx=((2du)/(1+u^2 )) sinx=2cos(x/2)sin(x/2)=((2u)/(1+u^2 )) 1+cosx=2cos^2 (x/2)=(2/(1+u^2 )) A=ln((((√2)+1)/2))−ln2+∫_0 ^(tan^(−1) (π/8)) (1/(((2u)/(1+u^2 ))×(2/(1+u^2 ))))×((2du)/(1+u^2 )) A=ln((√2)+2)−2ln2+(1/2)∫_0 ^((√2)−1) ((1+u^2 )/u)du =ln((√2)+2)−2ln2+(1/2)[lnu+(1/2)u^2 ]_0 ^((√2)−1) A=−∞ because (lim_(u→0) lnu=−∞)](https://www.tinkutara.com/question/Q36087.png)