Menu Close

find-the-value-of-0-pi-4-ln-1-tanx-dx-




Question Number 42391 by abdo.msup.com last updated on 24/Aug/18
find the value of ∫_0 ^(π/4) ln(1+tanx)dx
findthevalueof0π4ln(1+tanx)dx
Commented by maxmathsup by imad last updated on 25/Aug/18
let A = ∫_0 ^(π/4)  ln(1+tanx) dx   changement x =(π/4) −t give  A = ∫_0 ^(π/4)  ln(1+tan((π/4)−t))dt  = ∫_0 ^(π/4)  ln(1+((1−tant)/(1+tant)))dt  =  ∫_0 ^(π/4)   ln((2/(1+tant))) dt  =(π/4)ln(2)  − ∫_0 ^(π/4)  ln(1+tant)dt  =(π/4)ln(2)−A ⇒ 2A =(π/4)ln(2) ⇒ A =(π/8)ln(2) .
letA=0π4ln(1+tanx)dxchangementx=π4tgiveA=0π4ln(1+tan(π4t))dt=0π4ln(1+1tant1+tant)dt=0π4ln(21+tant)dt=π4ln(2)0π4ln(1+tant)dt=π4ln(2)A2A=π4ln(2)A=π8ln(2).
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Aug/18
 I=∫_0 ^(Π/4) ln(1+tanx)dx  ∫_0 ^(Π/4) ln{1+tan((Π/4)−x)}dx  ∫_0 ^(Π/4) ln{1+((1−tanx)/(1+tanx))}dx  ∫_0 ^(Π/4) ln((2/(1+tanx)))dx  =∫_0 ^(Π/4) ln2 dx−∫_0 ^(Π/4) ln(1+tanx)dx  2I=ln2∫_0 ^(Π/4) dx  I=ln2×((Π/4)/2)=ln2×(Π/8)
I=0Π4ln(1+tanx)dx0Π4ln{1+tan(Π4x)}dx0Π4ln{1+1tanx1+tanx}dx0Π4ln(21+tanx)dx=0Π4ln2dx0Π4ln(1+tanx)dx2I=ln20Π4dxI=ln2×Π42=ln2×Π8

Leave a Reply

Your email address will not be published. Required fields are marked *