find-the-value-of-0-pi-4-ln-1-tanx-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42391 by abdo.msup.com last updated on 24/Aug/18 findthevalueof∫0π4ln(1+tanx)dx Commented by maxmathsup by imad last updated on 25/Aug/18 letA=∫0π4ln(1+tanx)dxchangementx=π4−tgiveA=∫0π4ln(1+tan(π4−t))dt=∫0π4ln(1+1−tant1+tant)dt=∫0π4ln(21+tant)dt=π4ln(2)−∫0π4ln(1+tant)dt=π4ln(2)−A⇒2A=π4ln(2)⇒A=π8ln(2). Answered by tanmay.chaudhury50@gmail.com last updated on 24/Aug/18 I=∫0Π4ln(1+tanx)dx∫0Π4ln{1+tan(Π4−x)}dx∫0Π4ln{1+1−tanx1+tanx}dx∫0Π4ln(21+tanx)dx=∫0Π4ln2dx−∫0Π4ln(1+tanx)dx2I=ln2∫0Π4dxI=ln2×Π42=ln2×Π8 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-107927Next Next post: calculate-lnx-x-x-lnx-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.