Menu Close

find-the-value-of-0-pi-4-tan-x-dx-2-cos-x-2sin-2-x-




Question Number 40143 by maxmathsup by imad last updated on 16/Jul/18
find the value of  ∫_0 ^(π/4)      ((tan(x)dx)/( (√2)cos(x) +2sin^2 (x)))
findthevalueof0π4tan(x)dx2cos(x)+2sin2(x)
Commented by math khazana by abdo last updated on 22/Jul/18
I = ∫_0 ^(π/4)        ((sinx)/(cosx((√2)cosx +2(1−cos^2 x)))dx  changement cosx =t give  I = ∫_1 ^(1/( (√2)))       ((√(1−t^2 ))/(t{(√2)t +2−2t^2 })) ((−dt)/( (√(1−t^2 ))))  = ∫_(1/( (√2))) ^1      (dt/(t{−2t^2  +(√2)t +2})) let decompose  F(t) = (1/(t{ −2t^2  +(√2) t+2}))  Δ^ =2−4(−2)2=2 +16 =18  ⇒  t_1 =((−(√2) +3(√2))/(−2)) =(((√2) −3(√2))/2)=−(√2)  t_2 =((−(√2) −3(√2))/(−2)) =(((√2)+3(√2))/2)=2(√2)  F(t) = (1/(−2t(t−t_1 )(t−t_2 ))) =(a/t) +(b/(t−t_1 )) +(c/(t−t_2 ))  a=lim_(t→0) tF(t)=(1/2)  b =lim_(t→t_1 )    (t−t_1 )F(t) = ((−1)/(2t_1 (t_1 −t_2 )))  = ((−1)/(−2(√2)(−3(√2)))) = (1/(12))  c = lim_(t→t_2 )    (t−t_2 )F(t)= ((−1)/(2t_2 (t_2 −t_1 ))) =((−1)/(4(√2)(3(√2))))  =((−1)/(24)) ⇒  F(t) = (1/(2t))  +(1/(12(t−t_1 ))) −(1/(24(t−t_2 ))) ⇒  ∫_(1/( (√2))) ^1 F(t)dt =(1/2) ∫_(1/( (√2))) ^1  (dt/t) +(1/(12)) ∫_(1/( (√2))) ^1   (dt/(t+(√2))) −(1/(24)) ∫_(1/( (√2))) ^1  (dt/(t−2(√2)))  =(1/2)[ln∣t∣]_(1/( (√2))) ^1   +(1/(12))[ln∣t+(√2)∣]_(1/( (√2))) ^1  −(1/(24))[ln∣t−2(√2)∣]_(1/( (√2))) ^1   =((ln((√(2))))/2) +(1/(12)){ln(1+(√2))−ln((√2) +(1/( (√2))))}  −(1/(24)){ln(2(√2) −1)−ln(2(√2) −(1/( (√2))))} .
I=0π4sinxcosx(2cosx+2(1cos2x)dxchangementcosx=tgiveI=1121t2t{2t+22t2}dt1t2=121dtt{2t2+2t+2}letdecomposeF(t)=1t{2t2+2t+2}Δ=24(2)2=2+16=18t1=2+322=2322=2t2=2322=2+322=22F(t)=12t(tt1)(tt2)=at+btt1+ctt2a=limt0tF(t)=12b=limtt1(tt1)F(t)=12t1(t1t2)=122(32)=112c=limtt2(tt2)F(t)=12t2(t2t1)=142(32)=124F(t)=12t+112(tt1)124(tt2)121F(t)dt=12121dtt+112121dtt+2124121dtt22=12[lnt]121+112[lnt+2]121124[lnt22]121=ln(2)2+112{ln(1+2)ln(2+12)}124{ln(221)ln(2212)}.

Leave a Reply

Your email address will not be published. Required fields are marked *