Menu Close

find-the-value-of-0-pi-dx-2cos-2-x-sin-2-x-




Question Number 28815 by abdo imad last updated on 30/Jan/18
find the value of   ∫_0 ^π     (dx/(2cos^2 x +sin^2 x)) .
findthevalueof0πdx2cos2x+sin2x.
Answered by mrW2 last updated on 31/Jan/18
∫_0 ^π     (dx/(2cos^2 x +sin^2 x))   =∫_0 ^π     (dx/(1+cos^2 x))   =2∫_0 ^π     (dx/(3+2cos^2 x−1))   =2∫_0 ^π     (dx/(3+cos 2x))   =2×2[((tan^(−1) (((tan x)/( (√2)))))/(2(√2)))]_0 ^(π/2)   =(π/( (√2)))
0πdx2cos2x+sin2x=0πdx1+cos2x=20πdx3+2cos2x1=20πdx3+cos2x=2×2[tan1(tanx2)22]0π/2=π2
Commented by abdo imad last updated on 31/Jan/18
another metod by redidus theorem we have  I = ∫_0 ^π     (dx/(1+cos^2 x))= ∫_0 ^π    (dx/(1+((1+cos(2x))/2)))=∫_0 ^π  ((2dx)/(3+cos(2x)))  the ch. 2x=t   give  I=  ∫_0 ^(2π)    (dt/(3+cost))  and the ch. e^(it) =z give  I= ∫_(∣z∣=1)    (1/(3+ ((z+z^(−1) )/2))) (dz/(iz))= ∫_(∣z∣=1)    ((2dz)/(iz( 6+z+z^(−1) )))  =  ∫_(∣z∣)    ((−2i)/(6z +z^2 +1))= ∫_(∣z∣=1)   ((−2i)/(z^2  +6z +1))dz let put  f(z)= ((−2i)/(z^2  +6z +1))  , poles of f?  z^2 +6z+1=0⇒Δ=36−4= 32  ⇒z_1 =((−6 +4(√2))/2)=−3+2(√2)  z_2 = −3−2(√2) we have ∣z_1 ∣−1=2(√2)−3−1=2((√2)−2)<0  and ∣z_2 ∣−1=3+2(√2)−1=2+2(√2) >1 (to eliminate because  out of circle)  ∫_(∣z∣=1) f(z)dx=2iπ Re(f ,z_1 ) but f(z)= ((−2i)/((z−z_1 )(z−z_2 )))  Res(f,z_1 )=lim_(z→z_1 ) (z−z_1 )f(z)= ((−2i)/(z_1 −z_2 ))= ((−2i)/(4(√2)))  ∫_(∣z∣=1) f(z)dx= 2iπ.((−i)/(2(√2)))= (π/( (√2))) so I= (π/( (√2)))  .
anothermetodbyredidustheoremwehaveI=0πdx1+cos2x=0πdx1+1+cos(2x)2=0π2dx3+cos(2x)thech.2x=tgiveI=02πdt3+costandthech.eit=zgiveI=z∣=113+z+z12dziz=z∣=12dziz(6+z+z1)=z2i6z+z2+1=z∣=12iz2+6z+1dzletputf(z)=2iz2+6z+1,polesoff?z2+6z+1=0Δ=364=32z1=6+422=3+22z2=322wehavez11=2231=2(22)<0andz21=3+221=2+22>1(toeliminatebecauseoutofcircle)z∣=1f(z)dx=2iπRe(f,z1)butf(z)=2i(zz1)(zz2)Res(f,z1)=limzz1(zz1)f(z)=2iz1z2=2i42z∣=1f(z)dx=2iπ.i22=π2soI=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *