Menu Close

find-the-value-of-0-sinx-x-1-x-2-dx-




Question Number 26558 by abdo imad last updated on 26/Dec/17
find the value of ∫_0 ^∞  ((sinx)/(x(1+x^2 )))dx
findthevalueof0sinxx(1+x2)dx
Commented by abdo imad last updated on 27/Dec/17
let put  I= ∫_0 ^∞  ((sinx)/(x(1+x^2 ))) dx   we know that  ∫_0 ^∞ ((cos(αx))/(1+x^2 )) dx= (π/2) e^(−α)   let take α≥0⇒  ∫_0 ^1  (π/2) e^(−α) dα= −(π/2)[ e^(−α) ]_0 ^1 =−(π/2)( e^(−1) −1)  =(π/2)(1− e^(−1) ) and from another side  ∫_0 ^1  (π/2) e^(−α)   dα  = ∫_0 ^1  (∫_0 ^∞ ((cos(αx))/(1+x^2 ))dx)dα    = ∫_0 ^∞ ( ∫_0 ^1 cos(αx)dα)(dx/(1+x^2 ))  (by fubini theorem )  =∫_0 ^∞ ( [((sin(αx))/x) ]_(α=0) ^(α=1) ) (dx/(1+x^2 ))= ∫_0 ^∞  ((sinx)/x).(( dx)/(1+x^2 ))  ⇒ ∫_0 ^∞   ((sinx)/(x(1+x^2 )))dx= (π/2)(1− (1/e)).
letputI=0sinxx(1+x2)dxweknowthat0cos(αx)1+x2dx=π2eαlettakeα001π2eαdα=π2[eα]01=π2(e11)=π2(1e1)andfromanotherside01π2eαdα=01(0cos(αx)1+x2dx)dα=0(01cos(αx)dα)dx1+x2(byfubinitheorem)=0([sin(αx)x]α=0α=1)dx1+x2=0sinxx.dx1+x20sinxx(1+x2)dx=π2(11e).

Leave a Reply

Your email address will not be published. Required fields are marked *