Menu Close

find-the-value-of-0-t-1-t-2-dt-




Question Number 36188 by prof Abdo imad last updated on 30/May/18
find the value of  ∫_0 ^∞   ((√t)/(1+t^2 ))dt
findthevalueof0t1+t2dt
Commented by maxmathsup by imad last updated on 15/Aug/18
let I = ∫_0 ^∞    ((√t)/(1+t^2 )) dt  changement (√t) =x give  I  = ∫_0 ^∞    (x/(1+x^4 ))(2x)dx = 2  ∫_0 ^∞   (x^2 /(1+x^4 )) dx =∫_(−∞) ^(+∞)    (x^2 /(x^4  +1))dx let consider  ϕ(z) =(z^2 /(z^4 +1))  we have ϕ(z) = (z^2 /((z^2 −i)(z^2  +i)))  =(z^2 /((z−(√i))(z+(√i))(z−(√(−i)))(z+(√(−i))))) =(z^2 /((z −e^((iπ)/4) )(z+e^((−iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  the poles of ϕ are +^− e^((iπ)/4)   and  +^−  e^(−((iπ)/4))   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ, e^((iπ)/4) ) +Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,z_i ) =(z_i ^2 /(4z_i ^3 )) =(z_i ^3 /(−4)) =−(1/4) z_i ^3  ⇒Res(ϕ,e^((iπ)/4) ) =−(1/4) e^(i((3π)/4))   Res(ϕ,−e^(−((iπ)/4)) ) = (((−e^(−((iπ)/4)) )^3 )/(−4)) =(1/4) e^(−((i3π)/4))   ∫_(−∞) ^(+∞)    ϕ(z)dz =((2iπ)/4){−  e^((i3π)/4)   +e^(−((i3π)/4)) } =−((iπ)/2) ( e^((i3π)/4)  −e^(−((i3π)/4)) )  =−((iπ)/2)(2i sin(((3π)/4))) = ((π(√2))/2)  ⇒ I  = (π/( (√2)))  .
letI=0t1+t2dtchangementt=xgiveI=0x1+x4(2x)dx=20x21+x4dx=+x2x4+1dxletconsiderφ(z)=z2z4+1wehaveφ(z)=z2(z2i)(z2+i)=z2(zi)(z+i)(zi)(z+i)=z2(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)thepolesofφare+eiπ4and+eiπ4+φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,zi)=zi24zi3=zi34=14zi3Res(φ,eiπ4)=14ei3π4Res(φ,eiπ4)=(eiπ4)34=14ei3π4+φ(z)dz=2iπ4{ei3π4+ei3π4}=iπ2(ei3π4ei3π4)=iπ2(2isin(3π4))=π22I=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *