Question Number 36188 by prof Abdo imad last updated on 30/May/18
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\sqrt{{t}}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$
Commented by maxmathsup by imad last updated on 15/Aug/18
$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\sqrt{{t}}}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:\:{changement}\:\sqrt{{t}}\:={x}\:{give} \\ $$$${I}\:\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}}{\mathrm{1}+{x}^{\mathrm{4}} }\left(\mathrm{2}{x}\right){dx}\:=\:\mathrm{2}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:=\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} \:+\mathrm{1}}{dx}\:{let}\:{consider} \\ $$$$\varphi\left({z}\right)\:=\frac{{z}^{\mathrm{2}} }{{z}^{\mathrm{4}} +\mathrm{1}}\:\:{we}\:{have}\:\varphi\left({z}\right)\:=\:\frac{{z}^{\mathrm{2}} }{\left({z}^{\mathrm{2}} −{i}\right)\left({z}^{\mathrm{2}} \:+{i}\right)} \\ $$$$=\frac{{z}^{\mathrm{2}} }{\left({z}−\sqrt{{i}}\right)\left({z}+\sqrt{{i}}\right)\left({z}−\sqrt{−{i}}\right)\left({z}+\sqrt{−{i}}\right)}\:=\frac{{z}^{\mathrm{2}} }{\left({z}\:−{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}+{e}^{\frac{−{i}\pi}{\mathrm{4}}} \right)\left({z}−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)} \\ $$$${the}\:{poles}\:{of}\:\varphi\:{are}\:\overset{−} {+}{e}^{\frac{{i}\pi}{\mathrm{4}}} \:\:{and}\:\:\overset{−} {+}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\left\{\:{Res}\left(\varphi,\:{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\:+{Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\right\} \\ $$$${Res}\left(\varphi,{z}_{{i}} \right)\:=\frac{{z}_{{i}} ^{\mathrm{2}} }{\mathrm{4}{z}_{{i}} ^{\mathrm{3}} }\:=\frac{{z}_{{i}} ^{\mathrm{3}} }{−\mathrm{4}}\:=−\frac{\mathrm{1}}{\mathrm{4}}\:{z}_{{i}} ^{\mathrm{3}} \:\Rightarrow{Res}\left(\varphi,{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\:=−\frac{\mathrm{1}}{\mathrm{4}}\:{e}^{{i}\frac{\mathrm{3}\pi}{\mathrm{4}}} \\ $$$${Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\:=\:\frac{\left(−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)^{\mathrm{3}} }{−\mathrm{4}}\:=\frac{\mathrm{1}}{\mathrm{4}}\:{e}^{−\frac{{i}\mathrm{3}\pi}{\mathrm{4}}} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:\varphi\left({z}\right){dz}\:=\frac{\mathrm{2}{i}\pi}{\mathrm{4}}\left\{−\:\:{e}^{\frac{{i}\mathrm{3}\pi}{\mathrm{4}}} \:\:+{e}^{−\frac{{i}\mathrm{3}\pi}{\mathrm{4}}} \right\}\:=−\frac{{i}\pi}{\mathrm{2}}\:\left(\:{e}^{\frac{{i}\mathrm{3}\pi}{\mathrm{4}}} \:−{e}^{−\frac{{i}\mathrm{3}\pi}{\mathrm{4}}} \right) \\ $$$$=−\frac{{i}\pi}{\mathrm{2}}\left(\mathrm{2}{i}\:{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{4}}\right)\right)\:=\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{2}}\:\:\Rightarrow\:{I}\:\:=\:\frac{\pi}{\:\sqrt{\mathrm{2}}}\:\:. \\ $$