Menu Close

find-the-value-of-0-t-a-1-1-t-2-dt-with-0-lt-a-lt-1-




Question Number 62330 by maxmathsup by imad last updated on 19/Jun/19
find the value of ∫_0 ^∞   (t^(a−1) /((1+t)^2 ))dt   with   0<a<1
findthevalueof0ta1(1+t)2dtwith0<a<1
Commented by mathmax by abdo last updated on 04/Jul/19
we have proved that B(x,y) =∫_0 ^∞    (t^(x−1) /((1+t)^(x+y) )) dt  let take x=a and x+y=2 ⇒  x=a and y =2−a ⇒  ∫_0 ^∞    (t^(a−1) /((1+t)^2 ))dt =B(a,2−a)    =((Γ(a)Γ(2−a))/(Γ(a+2−a))) =Γ(a)Γ(2−a)    (Γ(2)=1! =1) ⇒  ∫_0 ^∞    (t^(a−1) /((1+t)^2 ))dt =Γ(a)Γ(2−a)
wehaveprovedthatB(x,y)=0tx1(1+t)x+ydtlettakex=aandx+y=2x=aandy=2a0ta1(1+t)2dt=B(a,2a)=Γ(a)Γ(2a)Γ(a+2a)=Γ(a)Γ(2a)(Γ(2)=1!=1)0ta1(1+t)2dt=Γ(a)Γ(2a)
Answered by tanmay last updated on 19/Jun/19
t=tan^2 θ→dt=2tanθsec^2 θdθ    ∫_0 ^(π/2) (((tan^2 θ)^(a−1) ×2tanθsec^2 θdθ)/(sec^4 θ))  2∫_0 ^(π/2) (sinθ)^(2a−2+1) ×cos^2 θ×(1/((cosθ)^(2a−2+1) ))dθ  2∫_0 ^(π/2) (sinθ)^(2a−1) ×(cosθ)^(2−2a+1) dθ  formula 2∫_0 ^(π/2) (sinθ)^(2p−1) (cosθ)^(2q−1) dθ  =((⌈(p)⌈(q))/(⌈(p+q))) here 2p−1=2a−1  p=a  2q−1=3−2a  2q=4−2a→q=2−a←look here  answer =((⌈(p)⌈(q))/(⌈(p+q)))=((⌈(a)×⌈(2−a))/(⌈(a+2−a)))  =((⌈(a)⌈(2−a))/1)
t=tan2θdt=2tanθsec2θdθ0π2(tan2θ)a1×2tanθsec2θdθsec4θ20π2(sinθ)2a2+1×cos2θ×1(cosθ)2a2+1dθ20π2(sinθ)2a1×(cosθ)22a+1dθformula20π2(sinθ)2p1(cosθ)2q1dθ=(p)(q)(p+q)here2p1=2a1p=a2q1=32a2q=42aq=2alookhereanswer=(p)(q)(p+q)=(a)×(2a)(a+2a)=(a)(2a)1

Leave a Reply

Your email address will not be published. Required fields are marked *