Question Number 28035 by abdo imad last updated on 18/Jan/18
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:{x}\frac{{arctan}\left(\mathrm{2}{x}\right)}{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:. \\ $$
Commented by abdo imad last updated on 23/Jan/18
$${let}\:{integratr}\:{by}\:{parts}\: \\ $$$$\left.{I}=\:\frac{−\mathrm{1}}{\mathrm{2}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)}\:{arctan}\left(\mathrm{2}{x}\right)\underset{\mathrm{0}} {\right]}^{+\infty} \:+\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{dx}}{\mathrm{2}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{{R}\:} \:\frac{{dx}}{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)}\:{let}\:{introduce} \\ $$$${the}\:{complex}\:{function} \\ $$$${f}\left({z}\right)=\:\:\:\:\:\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} \:+\mathrm{2}\right)\left(\mathrm{4}{z}^{\mathrm{2}} +\mathrm{1}\right)}\:\:{poles}\:{of}\:{f}? \\ $$$${f}\left({z}\right)=\:\:\:\frac{}{\mathrm{4}\left({z}−\sqrt{\mathrm{2}}{i}\right)\left({x}+\sqrt{\mathrm{2}}{i}\right)\left({z}−\frac{{i}}{\mathrm{2}}\right)\left({z}+\frac{{i}}{\mathrm{2}}\right)} \\ $$$${the}\:{poles}\:{of}\:{f}\:{are}\:\sqrt{\mathrm{2}}{i},−\sqrt{\mathrm{2}}{i},\frac{{i}}{\mathrm{2}}\:{and}\:\frac{−{i}}{\mathrm{2}} \\ $$$$\int_{{R}} {f}\left({x}\right){dz}=\mathrm{2}{i}\pi\left({Res}\left({f},\sqrt{\mathrm{2}}{i}\right)+{Res}\left({f},\frac{{i}}{\mathrm{2}}\right)\right) \\ $$$${Res}\left({f},\sqrt{\mathrm{2}}{i}\right)=\:\:\:\:\frac{\mathrm{1}}{\left.\mathrm{4}\left(\mathrm{2}\sqrt{\mathrm{2}}{i}\right)\right)\left(\left(\sqrt{\mathrm{2}}{i}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{4}}\right)} \\ $$$$=\:\:\:\:\frac{\mathrm{1}}{\mathrm{8}\sqrt{\mathrm{2}}{i}\left(−\mathrm{2}\:+\frac{\mathrm{1}}{\mathrm{4}}\right)}=\:\frac{\mathrm{1}}{\mathrm{8}\sqrt{\mathrm{2}}{i}\:.\frac{−\mathrm{7}}{\mathrm{4}}} \\ $$$$=\:\frac{−\mathrm{1}}{\mathrm{14}\sqrt{\mathrm{2}}{i}} \\ $$$${Res}\left({f},\frac{{i}}{\mathrm{2}}\right)=\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}\left(\frac{{i}}{\mathrm{2}}\:−\sqrt{\mathrm{2}}{i}\right)\left(\frac{{i}}{\mathrm{2}}+\sqrt{\mathrm{2}}{i}\right){i}} \\ $$$$=\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}\left(\:−\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{2}\right){i}}=\:\:\frac{\mathrm{1}}{\mathrm{7}{i}} \\ $$$$\int_{{R}} ^{} {f}\left({z}\right){dz}=\mathrm{2}{i}\pi\left(\:\:\frac{−\mathrm{1}}{\mathrm{14}\sqrt{\mathrm{2}}{i}}\:+\:\frac{\mathrm{1}}{\mathrm{7}{i}}\right) \\ $$$$=\:\frac{−\pi}{\mathrm{7}\sqrt{\mathrm{2}}}\:\:+\frac{\mathrm{2}\pi}{\mathrm{7}}=\frac{\mathrm{2}\pi\sqrt{\mathrm{2}}−\pi}{\mathrm{7}\sqrt{\mathrm{2}}}\:. \\ $$
Commented by abdo imad last updated on 23/Jan/18
$${I}=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{{R}} {f}\left({z}\right){dz}. \\ $$