find-the-value-of-0-x-arctan-2x-2-x-2-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 28035 by abdo imad last updated on 18/Jan/18 findthevalueof∫0∞xarctan(2x)(2+x2)2dx. Commented by abdo imad last updated on 23/Jan/18 letintegratrbypartsMissing \left or extra \rightMissing \left or extra \right=∫0∞dx(2+x2)(1+4x2)=12∫Rdx(2+x2)(1+4x2)letintroducethecomplexfunctionf(z)=1(z2+2)(4z2+1)polesoff?f(z)=4(z−2i)(x+2i)(z−i2)(z+i2)thepolesoffare2i,−2i,i2and−i2∫Rf(x)dz=2iπ(Res(f,2i)+Res(f,i2))Res(f,2i)=14(22i))((2i)2+14)=182i(−2+14)=182i.−74=−1142iRes(f,i2)=14(i2−2i)(i2+2i)i=14(−14+2)i=17i∫Rf(z)dz=2iπ(−1142i+17i)=−π72+2π7=2π2−π72. Commented by abdo imad last updated on 23/Jan/18 I=12∫Rf(z)dz. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-28034Next Next post: Given-A-5t-2-i-tj-t-3-k-and-B-sin-t-i-cos-t-j-Calculate-d-A-B-dx-d-A-B-dx-and-d-A-A-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.