Menu Close

find-the-value-of-0-x-arctan-2x-2-x-2-2-dx-




Question Number 28035 by abdo imad last updated on 18/Jan/18
find the value of  ∫_0 ^∞    x((arctan(2x))/((2+x^2 )^2 ))dx .
findthevalueof0xarctan(2x)(2+x2)2dx.
Commented by abdo imad last updated on 23/Jan/18
let integratr by parts   I= ((−1)/(2(2+x^2 ))) arctan(2x)]^(+∞) _0  +∫_0 ^∞    ((2dx)/(2(2+x^2 )(1+4x^2 )))  = ∫_0 ^∞     (dx/((2+x^2 )(1+4x^2 )))  =(1/2)∫_(R )  (dx/((2+x^2 )(1+4x^2 ))) let introduce  the complex function  f(z)=     (1/((z^2  +2)(4z^2 +1)))  poles of f?  f(z)=   (/(4(z−(√2)i)(x+(√2)i)(z−(i/2))(z+(i/2))))  the poles of f are (√2)i,−(√2)i,(i/2) and ((−i)/2)  ∫_R f(x)dz=2iπ(Res(f,(√2)i)+Res(f,(i/2)))  Res(f,(√2)i)=    (1/(4(2(√2)i))(((√2)i)^2  +(1/4))))  =    (1/(8(√2)i(−2 +(1/4))))= (1/(8(√2)i .((−7)/4)))  = ((−1)/(14(√2)i))  Res(f,(i/2))=         (1/(4((i/2) −(√2)i)((i/2)+(√2)i)i))  =    (1/(4( −(1/4)+2)i))=  (1/(7i))  ∫_R ^ f(z)dz=2iπ(  ((−1)/(14(√2)i)) + (1/(7i)))  = ((−π)/(7(√2)))  +((2π)/7)=((2π(√2)−π)/(7(√2))) .
letintegratrbypartsMissing \left or extra \right=0dx(2+x2)(1+4x2)=12Rdx(2+x2)(1+4x2)letintroducethecomplexfunctionf(z)=1(z2+2)(4z2+1)polesoff?f(z)=4(z2i)(x+2i)(zi2)(z+i2)thepolesoffare2i,2i,i2andi2Rf(x)dz=2iπ(Res(f,2i)+Res(f,i2))Res(f,2i)=14(22i))((2i)2+14)=182i(2+14)=182i.74=1142iRes(f,i2)=14(i22i)(i2+2i)i=14(14+2)i=17iRf(z)dz=2iπ(1142i+17i)=π72+2π7=2π2π72.
Commented by abdo imad last updated on 23/Jan/18
I= (1/2)∫_R f(z)dz.
I=12Rf(z)dz.

Leave a Reply

Your email address will not be published. Required fields are marked *