Menu Close

find-the-value-of-0-x-arctan-2x-2-x-2-2-dx-




Question Number 28035 by abdo imad last updated on 18/Jan/18
find the value of  ∫_0 ^∞    x((arctan(2x))/((2+x^2 )^2 ))dx .
$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:{x}\frac{{arctan}\left(\mathrm{2}{x}\right)}{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:. \\ $$
Commented by abdo imad last updated on 23/Jan/18
let integratr by parts   I= ((−1)/(2(2+x^2 ))) arctan(2x)]^(+∞) _0  +∫_0 ^∞    ((2dx)/(2(2+x^2 )(1+4x^2 )))  = ∫_0 ^∞     (dx/((2+x^2 )(1+4x^2 )))  =(1/2)∫_(R )  (dx/((2+x^2 )(1+4x^2 ))) let introduce  the complex function  f(z)=     (1/((z^2  +2)(4z^2 +1)))  poles of f?  f(z)=   (/(4(z−(√2)i)(x+(√2)i)(z−(i/2))(z+(i/2))))  the poles of f are (√2)i,−(√2)i,(i/2) and ((−i)/2)  ∫_R f(x)dz=2iπ(Res(f,(√2)i)+Res(f,(i/2)))  Res(f,(√2)i)=    (1/(4(2(√2)i))(((√2)i)^2  +(1/4))))  =    (1/(8(√2)i(−2 +(1/4))))= (1/(8(√2)i .((−7)/4)))  = ((−1)/(14(√2)i))  Res(f,(i/2))=         (1/(4((i/2) −(√2)i)((i/2)+(√2)i)i))  =    (1/(4( −(1/4)+2)i))=  (1/(7i))  ∫_R ^ f(z)dz=2iπ(  ((−1)/(14(√2)i)) + (1/(7i)))  = ((−π)/(7(√2)))  +((2π)/7)=((2π(√2)−π)/(7(√2))) .
$${let}\:{integratr}\:{by}\:{parts}\: \\ $$$$\left.{I}=\:\frac{−\mathrm{1}}{\mathrm{2}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)}\:{arctan}\left(\mathrm{2}{x}\right)\underset{\mathrm{0}} {\right]}^{+\infty} \:+\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{dx}}{\mathrm{2}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{{R}\:} \:\frac{{dx}}{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)}\:{let}\:{introduce} \\ $$$${the}\:{complex}\:{function} \\ $$$${f}\left({z}\right)=\:\:\:\:\:\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} \:+\mathrm{2}\right)\left(\mathrm{4}{z}^{\mathrm{2}} +\mathrm{1}\right)}\:\:{poles}\:{of}\:{f}? \\ $$$${f}\left({z}\right)=\:\:\:\frac{}{\mathrm{4}\left({z}−\sqrt{\mathrm{2}}{i}\right)\left({x}+\sqrt{\mathrm{2}}{i}\right)\left({z}−\frac{{i}}{\mathrm{2}}\right)\left({z}+\frac{{i}}{\mathrm{2}}\right)} \\ $$$${the}\:{poles}\:{of}\:{f}\:{are}\:\sqrt{\mathrm{2}}{i},−\sqrt{\mathrm{2}}{i},\frac{{i}}{\mathrm{2}}\:{and}\:\frac{−{i}}{\mathrm{2}} \\ $$$$\int_{{R}} {f}\left({x}\right){dz}=\mathrm{2}{i}\pi\left({Res}\left({f},\sqrt{\mathrm{2}}{i}\right)+{Res}\left({f},\frac{{i}}{\mathrm{2}}\right)\right) \\ $$$${Res}\left({f},\sqrt{\mathrm{2}}{i}\right)=\:\:\:\:\frac{\mathrm{1}}{\left.\mathrm{4}\left(\mathrm{2}\sqrt{\mathrm{2}}{i}\right)\right)\left(\left(\sqrt{\mathrm{2}}{i}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{4}}\right)} \\ $$$$=\:\:\:\:\frac{\mathrm{1}}{\mathrm{8}\sqrt{\mathrm{2}}{i}\left(−\mathrm{2}\:+\frac{\mathrm{1}}{\mathrm{4}}\right)}=\:\frac{\mathrm{1}}{\mathrm{8}\sqrt{\mathrm{2}}{i}\:.\frac{−\mathrm{7}}{\mathrm{4}}} \\ $$$$=\:\frac{−\mathrm{1}}{\mathrm{14}\sqrt{\mathrm{2}}{i}} \\ $$$${Res}\left({f},\frac{{i}}{\mathrm{2}}\right)=\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}\left(\frac{{i}}{\mathrm{2}}\:−\sqrt{\mathrm{2}}{i}\right)\left(\frac{{i}}{\mathrm{2}}+\sqrt{\mathrm{2}}{i}\right){i}} \\ $$$$=\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}\left(\:−\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{2}\right){i}}=\:\:\frac{\mathrm{1}}{\mathrm{7}{i}} \\ $$$$\int_{{R}} ^{} {f}\left({z}\right){dz}=\mathrm{2}{i}\pi\left(\:\:\frac{−\mathrm{1}}{\mathrm{14}\sqrt{\mathrm{2}}{i}}\:+\:\frac{\mathrm{1}}{\mathrm{7}{i}}\right) \\ $$$$=\:\frac{−\pi}{\mathrm{7}\sqrt{\mathrm{2}}}\:\:+\frac{\mathrm{2}\pi}{\mathrm{7}}=\frac{\mathrm{2}\pi\sqrt{\mathrm{2}}−\pi}{\mathrm{7}\sqrt{\mathrm{2}}}\:. \\ $$
Commented by abdo imad last updated on 23/Jan/18
I= (1/2)∫_R f(z)dz.
$${I}=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{{R}} {f}\left({z}\right){dz}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *