Menu Close

find-the-value-of-0-x-e-x-1-dx-




Question Number 27481 by abdo imad last updated on 07/Jan/18
find the value of ∫_0 ^∝  ((√x)/(e^x −1))dx .
findthevalueof0xex1dx.
Commented by abdo imad last updated on 10/Jan/18
we have proved that ∫_0 ^∞   (t^(x−1) /(e^t  −1))=ξ(x)Γ(x)  so ∫_0 ^∞   ((√t)/(e^t  −1)) dt= ∫_0 ^∞  (t^((3/2)−1) /(e^t  −1)) = ξ((3/2)) Γ((3/2))  the relation Γ(x+1)=xΓ(x) give Γ((3/2))=(1/2) Γ((1/2))  but Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt ⇒Γ((1/2))= ∫_0 ^∞  (e^(−t) /( (√t)))dt  the ch.(√t) =u    give ∫_0 ^∞  (e^(−t) /( (√t)))dt==∫_0 ^∞  (e^(−u^2 ) /u)(2u)du= 2∫_0 ^∞  e^(−u^2 ) du = (√π)  ⇒ Γ( (1/2))= (√π)  ⇒ ∫_0 ^∞   ((√t)/( e^t  −1))= (√π) ξ((3/2))    and ξ((3/2))= Σ_(n=1) ^∝  (1/(n(√n))).  S_n = Σ_(k=1) ^(n )   (1/(k(√k))) = Σ_(k=1) ^n ∫_k ^(k+1)  (dt/(k(√k)))  but                k≤t≤k+1⇒ (√k)≤(√t)≤(√(k+1))⇒   k(√k)   ≤   t(√t)≤(k+1)(√(k+1))  ⇒      (1/((k+1)(√(k+1))))        ≤   (1/(t(√t)))      ≤  (1/(k(√k)))  ⇒    Σ_(k=1) ^n   _( (1/(k+1)(√(k+1))))≤  Σ_(k=1) ^n ∫_k ^(k+1 ) t^(−(3/2))   dt ≤  S_n   ⇒ Σ_(k=2) ^(n+1)   (1/(k(√k)))  ≤ Σ_(k=1) ^n   [  (1/(−(3/2)+1))t^(−(3/2)+1) ]_k ^(k+1)   ≤ S_n   S_n    +(1/(n+1)) −1  ≤ −2   Σ_(k=1) ^n ( (k+1)^(−(1/2))  −k^(−(1/2)) )≤ S_n   S_n   −(n/(n+1))  ≤  −2 Σ_(k=1) ^n (  (1/( (√(k+1))))  − (1/( (√k))))  ≤ S_n   S_n  −(n/(n+1))  ≤−2( (1/( (√2))) −1 +(1/( (√3) )) − (1/( (√2))) +...(1/( (√(n+1)))) −(1/( (√n)))) ≤ S_n   S_(n )  − (n/(n+1)) ≤ −2( (1/( (√(n+1)))) −1) ≤ S_n   S_n   − (n/(n+1)) ≤ 2− (2/( (√(n+1))))  ≤ S_n     .....
wehaveprovedthat0tx1et1=ξ(x)Γ(x)so0tet1dt=0t321et1=ξ(32)Γ(32)therelationΓ(x+1)=xΓ(x)giveΓ(32)=12Γ(12)butΓ(x)=0tx1etdtΓ(12)=0ettdtthech.t=ugive0ettdt==0eu2u(2u)du=20eu2du=πΓ(12)=π0tet1=πξ(32)andξ(32)=n=11nn.Sn=k=1n1kk=k=1nkk+1dtkkbutktk+1ktk+1kktt(k+1)k+11(k+1)k+11tt1kkk=1n(1k+1)k+1k=1nkk+1t32dtSnk=2n+11kkk=1n[132+1t32+1]kk+1SnSn+1n+112k=1n((k+1)12k12)SnSnnn+12k=1n(1k+11k)SnSnnn+12(121+1312+1n+11n)SnSnnn+12(1n+11)SnSnnn+122n+1Sn..

Leave a Reply

Your email address will not be published. Required fields are marked *