Menu Close

find-the-value-of-1-1-1-1-i-1-i-1-i-pls-help-




Question Number 51922 by aseerimad last updated on 01/Jan/19
find the value of...           1−(1/(1+(1/(i/(1+(i/(1+i)))))))  pls help.
$${find}\:{the}\:{value}\:{of}… \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\frac{{i}}{\mathrm{1}+\frac{{i}}{\mathrm{1}+{i}}}}} \\ $$$${pls}\:{help}. \\ $$
Answered by ajfour last updated on 01/Jan/19
1+(i/(1+i)) = 1+((i(1−i))/2) = ((3+i)/2)  1+(1/(i/(1+(i/(1+i))))) = 1+((3+i)/(2i)) = ((3+3i)/(2i))  1−((2i)/(3+3i)) = ((3+i)/(3(1+i))) = (((3+i)(1−i))/6)    = ((1−i)/3) .
$$\mathrm{1}+\frac{{i}}{\mathrm{1}+{i}}\:=\:\mathrm{1}+\frac{{i}\left(\mathrm{1}−{i}\right)}{\mathrm{2}}\:=\:\frac{\mathrm{3}+{i}}{\mathrm{2}} \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{\frac{{i}}{\mathrm{1}+\frac{{i}}{\mathrm{1}+{i}}}}\:=\:\mathrm{1}+\frac{\mathrm{3}+{i}}{\mathrm{2}{i}}\:=\:\frac{\mathrm{3}+\mathrm{3}{i}}{\mathrm{2}{i}} \\ $$$$\mathrm{1}−\frac{\mathrm{2}{i}}{\mathrm{3}+\mathrm{3}{i}}\:=\:\frac{\mathrm{3}+{i}}{\mathrm{3}\left(\mathrm{1}+{i}\right)}\:=\:\frac{\left(\mathrm{3}+{i}\right)\left(\mathrm{1}−{i}\right)}{\mathrm{6}} \\ $$$$\:\:=\:\frac{\mathrm{1}−{i}}{\mathrm{3}}\:. \\ $$$$ \\ $$
Commented by aseerimad last updated on 01/Jan/19
Thank you!

Leave a Reply

Your email address will not be published. Required fields are marked *