Menu Close

find-the-value-of-1-1-dx-1-x-2-1-x-2-




Question Number 27215 by abdo imad last updated on 03/Jan/18
find the value of ∫_(−1) ^1     (dx/( (√(1−x^2 ))  +(√(1+x^2 ))))  .
$${find}\:{the}\:{value}\:{of}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\:+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:\:. \\ $$
Answered by Giannibo last updated on 03/Jan/18
    ∫_(−1) ^1 ((((√(1−x^2 ))−(√(1+x^2 )))/(((√(1−x^2 ))+(√(1−x^2 )))((√(1−x^2 ))−(√(1+x^2 )))))dx  ∫_(−1) ^1 (((√(1−x^2 ))−(√(1+x^2 )))/2)dx  =lim_(u→1) (∫_(−u) ^u ((√(1−x^2 ))/2)dx−∫_(−u) ^u ((√(1+x^2 ))/2)dx)  =lim_(u→1) (1/4)(sin^(−1) (u)+u(√(1−u^2 ))−sin^(−1) (−u)+u(√(1−u^2 ))−(ln (∣(√(u^2 +1))+u∣)+u(√(u^2 +1))−ln (∣(√(u^2 +1))−u∣)+u(√(u^2 +1)))  =(1/4)((π/2)+0+(π/2)−(ln ((√2)+1)+(√2)−ln ((√2)−1)+(√2)))  =(1/4)(π−2(√2)−ln ((((√2)+1)/( (√2)−1))))
$$ \\ $$$$ \\ $$$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\frac{\left(\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right.}{\left(\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }+\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\right)\left(\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)}\mathrm{dx} \\ $$$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\frac{\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }−\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}{\mathrm{2}}\mathrm{dx} \\ $$$$=\underset{\mathrm{u}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\underset{−\mathrm{u}} {\overset{\mathrm{u}} {\int}}\frac{\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}{\mathrm{2}}\mathrm{dx}−\underset{−\mathrm{u}} {\overset{\mathrm{u}} {\int}}\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}{\mathrm{2}}\mathrm{dx}\right) \\ $$$$=\underset{\mathrm{u}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{u}\right)+\mathrm{u}\sqrt{\mathrm{1}−\mathrm{u}^{\mathrm{2}} }−\mathrm{sin}^{−\mathrm{1}} \left(−\mathrm{u}\right)+\mathrm{u}\sqrt{\mathrm{1}−\mathrm{u}^{\mathrm{2}} }−\left(\mathrm{ln}\:\left(\mid\sqrt{\mathrm{u}^{\mathrm{2}} +\mathrm{1}}+\mathrm{u}\mid\right)+\mathrm{u}\sqrt{\mathrm{u}^{\mathrm{2}} +\mathrm{1}}−\mathrm{ln}\:\left(\mid\sqrt{\mathrm{u}^{\mathrm{2}} +\mathrm{1}}−\mathrm{u}\mid\right)+\mathrm{u}\sqrt{\mathrm{u}^{\mathrm{2}} +\mathrm{1}}\right)\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\pi}{\mathrm{2}}+\mathrm{0}+\frac{\pi}{\mathrm{2}}−\left(\mathrm{ln}\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)+\sqrt{\mathrm{2}}−\mathrm{ln}\:\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)+\sqrt{\mathrm{2}}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\pi−\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{ln}\:\left(\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\:\sqrt{\mathrm{2}}−\mathrm{1}}\right)\right) \\ $$
Commented by abdo imad last updated on 05/Jan/18
∫_(−1) ^1  (dx/( (√(1−x^2  )) +(√(1+x^2 )))) = ∫_(−1) ^1    (((√(1−x^2   )) −(√(1+x^2 )))/(−2x^2 )) dx...!!
$$\int_{−\mathrm{1}} ^{\mathrm{1}} \:\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} \:}\:+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:=\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\:\:\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} \:\:}\:−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{−\mathrm{2}{x}^{\mathrm{2}} }\:{dx}…!! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *