Menu Close

find-the-value-of-1-1-dx-1-x-2-1-x-2-




Question Number 27215 by abdo imad last updated on 03/Jan/18
find the value of ∫_(−1) ^1     (dx/( (√(1−x^2 ))  +(√(1+x^2 ))))  .
findthevalueof11dx1x2+1+x2.
Answered by Giannibo last updated on 03/Jan/18
    ∫_(−1) ^1 ((((√(1−x^2 ))−(√(1+x^2 )))/(((√(1−x^2 ))+(√(1−x^2 )))((√(1−x^2 ))−(√(1+x^2 )))))dx  ∫_(−1) ^1 (((√(1−x^2 ))−(√(1+x^2 )))/2)dx  =lim_(u→1) (∫_(−u) ^u ((√(1−x^2 ))/2)dx−∫_(−u) ^u ((√(1+x^2 ))/2)dx)  =lim_(u→1) (1/4)(sin^(−1) (u)+u(√(1−u^2 ))−sin^(−1) (−u)+u(√(1−u^2 ))−(ln (∣(√(u^2 +1))+u∣)+u(√(u^2 +1))−ln (∣(√(u^2 +1))−u∣)+u(√(u^2 +1)))  =(1/4)((π/2)+0+(π/2)−(ln ((√2)+1)+(√2)−ln ((√2)−1)+(√2)))  =(1/4)(π−2(√2)−ln ((((√2)+1)/( (√2)−1))))
11(1x21+x2(1x2+1x2)(1x21+x2)dx111x21+x22dx=limu1(uu1x22dxuu1+x22dx)=limu114(sin1(u)+u1u2sin1(u)+u1u2(ln(u2+1+u)+uu2+1ln(u2+1u)+uu2+1)=14(π2+0+π2(ln(2+1)+2ln(21)+2))=14(π22ln(2+121))
Commented by abdo imad last updated on 05/Jan/18
∫_(−1) ^1  (dx/( (√(1−x^2  )) +(√(1+x^2 )))) = ∫_(−1) ^1    (((√(1−x^2   )) −(√(1+x^2 )))/(−2x^2 )) dx...!!
11dx1x2+1+x2=111x21+x22x2dx!!

Leave a Reply

Your email address will not be published. Required fields are marked *