Menu Close

find-the-value-of-1-lnx-1-x-2-dx-




Question Number 28247 by abdo imad last updated on 22/Jan/18
find the value of ∫_1 ^(+∞)   ((lnx)/(1+x^2 ))dx .
findthevalueof1+lnx1+x2dx.
Commented by abdo imad last updated on 24/Jan/18
let put  I= ∫_1 ^(+∞)   ((lnx)/(1+x^2 ))dx  I= −∫_0 ^1    ((lnx)/(1+x^2 ))dx + ∫_0 ^∞  ((lnx)/(1+x^2 ))dx but we have proved that  ∫_0 ^∞ ((lnx)/(1+x^2 ))dx =0  so I= −∫_0 ^1   ((lnx)/(1+x^2 ))dx  = −∫_0 ^1 (Σ_(n=0) ^(+∞)  (−1)^n  x^(2n) )lnxdx  =−Σ_(n=0) ^∝  (−1)^n  ∫_0 ^1   x^(2n) lnx dx  and by parts  ∫_0 ^1   x^(2n) lnx dx= [ (1/(2n+1))x^(2n+1) lnx]_0 ^1 − ∫_0 ^1 (1/(2n+1)) x^(2n) dx  = −(1/((2n+1)^2 ))  so  I=  Σ_(n=0) ^∝    (((−1)^n )/((2n+1)^2 ))    thissum is known  be continued........
letputI=1+lnx1+x2dxI=01lnx1+x2dx+0lnx1+x2dxbutwehaveprovedthat0lnx1+x2dx=0soI=01lnx1+x2dx=01(n=0+(1)nx2n)lnxdx=n=0(1)n01x2nlnxdxandbyparts01x2nlnxdx=[12n+1x2n+1lnx]010112n+1x2ndx=1(2n+1)2soI=n=0(1)n(2n+1)2thissumisknownbecontinued..

Leave a Reply

Your email address will not be published. Required fields are marked *