find-the-value-of-1-lnx-1-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 28247 by abdo imad last updated on 22/Jan/18 findthevalueof∫1+∞lnx1+x2dx. Commented by abdo imad last updated on 24/Jan/18 letputI=∫1+∞lnx1+x2dxI=−∫01lnx1+x2dx+∫0∞lnx1+x2dxbutwehaveprovedthat∫0∞lnx1+x2dx=0soI=−∫01lnx1+x2dx=−∫01(∑n=0+∞(−1)nx2n)lnxdx=−∑n=0∝(−1)n∫01x2nlnxdxandbyparts∫01x2nlnxdx=[12n+1x2n+1lnx]01−∫0112n+1x2ndx=−1(2n+1)2soI=∑n=0∝(−1)n(2n+1)2thissumisknownbecontinued…….. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: dy-dx-x-y-2-x-2y-3-0-Pls-solve-the-differential-equation-Next Next post: Question-28248 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.