Menu Close

find-the-value-of-1-x-1-e-x-dx-




Question Number 40043 by abdo mathsup 649 cc last updated on 15/Jul/18
find  the value of  ∫_(−1) ^(+∞)   (√(x+1))e^(−x)  dx
findthevalueof1+x+1exdx
Answered by prof Abdo imad last updated on 22/Jul/18
changement (√(x+1))=t give x+1=t^2   I = ∫_0 ^∞   t e^(−(t^2 −1))  2t dt  =2e  ∫_0 ^∞   t^2  e^(−t^2 ) dt  and by partsu^′  =t e^(−t^2 )    v=t  I =2e{ [−(1/2) e^(−t^2 )  t]_0 ^(+∞)  +∫_0 ^∞   (1/2) e^(−t^2 ) dt}  = e  ∫_0 ^∞   e^(−t^2 ) dt  = e ((√π)/2)  ⇒  I = (e/2)(√π).
changementx+1=tgivex+1=t2I=0te(t21)2tdt=2e0t2et2dtandbypartsu=tet2v=tI=2e{[12et2t]0++012et2dt}=e0et2dt=eπ2I=e2π.

Leave a Reply

Your email address will not be published. Required fields are marked *