Question Number 99568 by Dwaipayan Shikari last updated on 22/Jun/20
$${Find}\:{the}\:{value}\:{of}\:\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+}}}}}}…\infty\:\:\:\:\:{by}\:{cos}\:{function} \\ $$
Commented by bemath last updated on 22/Jun/20
$${x}\:=\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{…}}}}} \\ $$$${x}^{\mathrm{2}} \:=\:\mathrm{2}+{x}\: \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{2}\:=\:\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)\left({x}+\mathrm{1}\right)\:=\:\mathrm{0}\: \\ $$$$\begin{cases}{{x}=\mathrm{2}\:{solution}}\\{{x}=−\mathrm{1}\:{rejected}\:}\end{cases} \\ $$
Commented by Dwaipayan Shikari last updated on 22/Jun/20
$${Thank}\:{you}\:{sir}\:.{Can}\:{you}\:{prove}\:{it}\:{using}'\:{cos}'{function}? \\ $$
Commented by Dwaipayan Shikari last updated on 22/Jun/20
$$\mathrm{1}+{cos}\frac{\pi}{\mathrm{4}}=\mathrm{2}{cos}^{\mathrm{2}} \frac{\pi}{\mathrm{8}} \\ $$$$\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)}={cos}\frac{\pi}{\mathrm{8}}={cos}\frac{\pi}{\mathrm{2}^{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}} \\ $$$${As}\:{we}\:{procceed}\:\:\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}\right)}={cos}\frac{\pi}{\mathrm{16}}\:={cos}\frac{\pi}{\mathrm{2}^{\mathrm{4}} }\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}} \\ $$$${so}\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}}}}…{n}\:{terms}\:\:={cos}\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} } \\ $$$$\underset{{n}\rightarrow\infty} {\:}{lim}\:{cos}\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }={cos}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${So}\:\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+}}}}}}}…\infty\:=\mathrm{1} \\ $$$${so}\:\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+}}}}}}}}….\infty\:\:=\mathrm{2} \\ $$$$ \\ $$
Commented by Dwaipayan Shikari last updated on 22/Jun/20
$${Sir},\:{i}\:{have}\:{found}\:{this}\:{way}\:{while}\:{experimenting}.{Is}\:{it}\:{true}? \\ $$
Answered by mahdi last updated on 21/Jun/20
$$\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+…}}}=\mathrm{A}\Rightarrow \\ $$$$\sqrt{\mathrm{2}+\mathrm{A}}=\mathrm{A}\Rightarrow\mathrm{A}^{\mathrm{2}} =\mathrm{A}+\mathrm{2}\Rightarrow\mathrm{A}^{\mathrm{2}} −\mathrm{A}−\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{A}=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\overset{\mathrm{A}>\mathrm{0}} {\Rightarrow}\:\:\mathrm{A}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$