Menu Close

Find-the-value-of-2-2-2-2-2-2-by-cos-function-




Question Number 99568 by Dwaipayan Shikari last updated on 22/Jun/20
Find the value of  (√(2+(√(2+(√(2+(√(2+(√(2+(√(2+))))))))))))...∞     by cos function
Findthevalueof2+2+2+2+2+2+bycosfunction
Commented by bemath last updated on 22/Jun/20
x =(√(2+(√(2+(√(2+(√(2+(√(...))))))))))  x^2  = 2+x   x^2 −x−2 = 0  (x−2)(x+1) = 0    { ((x=2 solution)),((x=−1 rejected )) :}
x=2+2+2+2+x2=2+xx2x2=0(x2)(x+1)=0{x=2solutionx=1rejected
Commented by Dwaipayan Shikari last updated on 22/Jun/20
Thank you sir .Can you prove it using′ cos′function?
Thankyousir.Canyouproveitusingcosfunction?
Commented by Dwaipayan Shikari last updated on 22/Jun/20
1+cos(π/4)=2cos^2 (π/8)  (√((1/2)(1+(1/( (√2))))))=cos(π/8)=cos(π/2^3 )=(1/2)(√(2+(√2)))  As we procceed  (√((1/2)(1+(1/2)(√(2+(√2))))))=cos(π/(16)) =cos(π/2^4 )    =(1/2)(√(2+(√(2+(√2)))))  so (1/2)(√(2+(√(2+(√(2+(√(2+(√(2+(√(2+(√2)))))))))))))...n terms  =cos(π/2^(n+1) )   _(n→∞) lim cos(π/2^(n+1) )=cos(0)=1  So  (1/2)(√(2+(√(2+(√(2+(√(2+(√(2+(√(2+(√(2+))))))))))))))...∞ =1  so  (√(2+(√(2+(√(2+(√(2+(√(2+(√(2+(√(2+(√(2+))))))))))))))))....∞  =2
1+cosπ4=2cos2π812(1+12)=cosπ8=cosπ23=122+2Asweprocceed12(1+122+2)=cosπ16=cosπ24=122+2+2so122+2+2+2+2+2+2nterms=cosπ2n+1nlimcosπ2n+1=cos(0)=1So122+2+2+2+2+2+2+=1so2+2+2+2+2+2+2+2+.=2
Commented by Dwaipayan Shikari last updated on 22/Jun/20
Sir, i have found this way while experimenting.Is it true?
Sir,ihavefoundthiswaywhileexperimenting.Isittrue?
Answered by mahdi last updated on 21/Jun/20
(√(2+(√(2+(√(2+...))))))=A⇒  (√(2+A))=A⇒A^2 =A+2⇒A^2 −A−2=0  ⇒A=((1±(√5))/2)  ⇒^(A>0)   A=((1+(√5))/2)
2+2+2+=A2+A=AA2=A+2A2A2=0A=1±52A>0A=1+52

Leave a Reply

Your email address will not be published. Required fields are marked *