Menu Close

Find-the-value-of-3-sin-x-cos-x-4-6-sin-x-cos-x-2-4-sin-6-x-cos-6-x-




Question Number 129019 by bramlexs22 last updated on 12/Jan/21
 Find the value of    3(sin x−cos x)^4 +6(sin x+cos x)^2 +   4(sin^6 x+cos^6 x).
$$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\mathrm{3}\left(\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{4}} +\mathrm{6}\left(\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{2}} + \\ $$$$\:\mathrm{4}\left(\mathrm{sin}\:^{\mathrm{6}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{6}} \mathrm{x}\right). \\ $$
Answered by MJS_new last updated on 12/Jan/21
3(s−(√(1−s^2 )))^4 +6(s+(√(1−s^2 )))^2 +4(s^6 +(1−s^2 )^3 )=  =−12s(√(1−s^2 ))−12s^4 +12s^2 +3+      +12s(√(1−s^2 ))                           +6+                                +12s^4 −12s^2 +4=13
$$\mathrm{3}\left({s}−\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }\right)^{\mathrm{4}} +\mathrm{6}\left({s}+\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }\right)^{\mathrm{2}} +\mathrm{4}\left({s}^{\mathrm{6}} +\left(\mathrm{1}−{s}^{\mathrm{2}} \right)^{\mathrm{3}} \right)= \\ $$$$=−\mathrm{12}{s}\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }−\mathrm{12}{s}^{\mathrm{4}} +\mathrm{12}{s}^{\mathrm{2}} +\mathrm{3}+ \\ $$$$\:\:\:\:+\mathrm{12}{s}\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{6}+ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{12}{s}^{\mathrm{4}} −\mathrm{12}{s}^{\mathrm{2}} +\mathrm{4}=\mathrm{13} \\ $$
Commented by bramlexs22 last updated on 12/Jan/21
amazing prof
$$\mathrm{amazing}\:\mathrm{prof} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *