Menu Close

Find-the-value-of-a-for-which-the-equation-sin-4-x-asin-2-x-1-0-will-have-a-solution-




Question Number 32220 by rahul 19 last updated on 21/Mar/18
Find the value of a for which the equation  sin^4 x+asin^2 x+1=0 will have a solution.
Findthevalueofaforwhichtheequationsin4x+asin2x+1=0willhaveasolution.
Commented by rahul 19 last updated on 21/Mar/18
Commented by rahul 19 last updated on 21/Mar/18
pls explain this:  Hence,t^2 +at+1=0 should have at least  one solution in [0,1]..........must have  exactly one root in [0,1].
plsexplainthis:Hence,t2+at+1=0shouldhaveatleastonesolutionin[0,1].musthaveexactlyonerootin[0,1].
Commented by MJS last updated on 21/Mar/18
because t=sin^2 x it should be  clear that t∈[0;1] ⇒ t≧0  t^2 +at+1=0  (t−t_1 )(t−t_2 )=0  t^2 +(−t_1 −t_2 )t+t_1 t_2 =0  ⇒ a=−t_1 −t_2  (but we don′t need this)  1=t_1 t_2 ∧t≧0 (from above) ⇒  ⇒ t_1 =t_2 ^(−1)  (but we don′t need this)  so if there′s one root in [0;1],  there′s also a change of sign, so  (f(0)<0∧f(1)>0)∨(f(0)>0∧f(1)<0) ⇒  ⇒ f(0)×f(1)<0
becauset=sin2xitshouldbeclearthatt[0;1]t0t2+at+1=0(tt1)(tt2)=0t2+(t1t2)t+t1t2=0a=t1t2(butwedontneedthis)1=t1t2t0(fromabove)t1=t21(butwedontneedthis)soiftheresonerootin[0;1],theresalsoachangeofsign,so(f(0)<0f(1)>0)(f(0)>0f(1)<0)f(0)×f(1)<0

Leave a Reply

Your email address will not be published. Required fields are marked *