Menu Close

Find-the-value-of-a-such-that-2-lt-2x-a-x-2-1-lt-2-




Question Number 160848 by naka3546 last updated on 07/Dec/21
Find  the  value  of  a  such  that       −2 < ((2x+a)/(x^2 +1)) < 2
$${Find}\:\:{the}\:\:{value}\:\:{of}\:\:{a}\:\:{such}\:\:{that} \\ $$$$\:\:\:\:\:−\mathrm{2}\:<\:\frac{\mathrm{2}{x}+{a}}{{x}^{\mathrm{2}} +\mathrm{1}}\:<\:\mathrm{2} \\ $$
Answered by kowalsky78 last updated on 08/Dec/21
I think the correct answer is a=−(3/2).
$${I}\:{think}\:{the}\:{correct}\:{answer}\:{is}\:{a}=−\frac{\mathrm{3}}{\mathrm{2}}. \\ $$
Commented by naka3546 last updated on 08/Dec/21
prove it, please.
$${prove}\:{it},\:{please}. \\ $$
Answered by mr W last updated on 08/Dec/21
−2<((2x+a)/(x^2 +1))<2  −2x^2 −2<2x+a<2x^2 +2  (1):  −2x^2 −2<2x+a  2x^2 +2x+a+2>0  2(x+(1/2))^2 +a+(3/2)>0  a+(3/2)>0  ⇒a>−(3/2)  (2):  2x+a<2x^2 +2  2x^2 −2x+2−a>0  2(x−(1/2))^2 +(3/2)−a>0  (3/2)−a>0  ⇒a<(3/2)  (1)+(2):  −(3/2)<a<(3/2)
$$−\mathrm{2}<\frac{\mathrm{2}{x}+{a}}{{x}^{\mathrm{2}} +\mathrm{1}}<\mathrm{2} \\ $$$$−\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}<\mathrm{2}{x}+{a}<\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2} \\ $$$$\left(\mathrm{1}\right): \\ $$$$−\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}<\mathrm{2}{x}+{a} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}+{a}+\mathrm{2}>\mathrm{0} \\ $$$$\mathrm{2}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +{a}+\frac{\mathrm{3}}{\mathrm{2}}>\mathrm{0} \\ $$$${a}+\frac{\mathrm{3}}{\mathrm{2}}>\mathrm{0} \\ $$$$\Rightarrow{a}>−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right): \\ $$$$\mathrm{2}{x}+{a}<\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}−{a}>\mathrm{0} \\ $$$$\mathrm{2}\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{2}}−{a}>\mathrm{0} \\ $$$$\frac{\mathrm{3}}{\mathrm{2}}−{a}>\mathrm{0} \\ $$$$\Rightarrow{a}<\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right): \\ $$$$−\frac{\mathrm{3}}{\mathrm{2}}<{a}<\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Commented by naka3546 last updated on 08/Dec/21
Thank  you,  sir.
$${Thank}\:\:{you},\:\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *